Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-30T00:52:56.439Z Has data issue: false hasContentIssue false

Dehydroxylation of Aluminous Goethite: Unit Cell Dimensions, Crystal Size and Surface Area

Published online by Cambridge University Press:  28 February 2024

H. D. Ruan
Affiliation:
Soil Science and Plant Nutrition, Faculty of Agriculture, University of Western Australia, Nedlands, WA 6907, Australia
R. J. Gilkes
Affiliation:
Soil Science and Plant Nutrition, Faculty of Agriculture, University of Western Australia, Nedlands, WA 6907, Australia

Abstract

This work investigates unit cell dimensions, crystal size and specific surface area of aluminous goethite that was progressively dehydroxylated to form hematite. Goethite synthesized from the ferrous system altered to hematite with DTGA maximum increasing from 236° to 273°C for 0 to 30.1 mole % Al-substitution. Unit cell dimensions of goethite and hematite decreased as Al-substitution increased and increased as excess OH increased. The crystallographically equivalent a axis of goethite and c axis of hematite were more sensitive than other axes to the presence of excess structural OH associated with Al-substitution. Specific surface area increased from 147 to 288 m2/g for goethite and from 171 to 230 m2/g for hematite as Al-substitution increased. An increase in specific surface area on heating goethite at temperatures between 200° and 240°C is related to a decrease in the size of coherently diffracting domains of goethite crystals and to the development of pore and structural defects associated with the formation of hematite. The decrease in specific surface area for heating temperatures above 240°C is attributed to the growth of hematite crystals by diffusion.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, R. R., and Gilkes, R. J. 1984 . Weathering of hornblende, plagioclase and chlorite in Meta-Dolerite Australia. Geoderma 34: 261280.CrossRefGoogle Scholar
Bernal, J. D., Dasgupta, D. R., and Mackay, A. L. 1959 . The oxides and hydroxides of iron and their structural interrelationships. Clay Miner. Bulletin 4: 1530.CrossRefGoogle Scholar
Brown, G., 1980. Crystal Structure of Clay Minerals and their X-ray Identification. Brindley, G. W., and Brown, G., eds. London: Mineralogical Society, pp. 361410.CrossRefGoogle Scholar
DeGrave, E., Bowen, L. H., and Weed, S. B. 1982 . Mössbauer study of aluminum substituted hematites. J. Magn. & Magn. Mat. 72: 129140.CrossRefGoogle Scholar
Fazey, P. G., O'Connor, B. H., and Hammond, L. C. 1991 . X-Ray powder diffraction rietveld characterization of synthetic aluminum-substituted goethite. Clays & Clay Miner. 39: 248253.CrossRefGoogle Scholar
Fey, M. B., and Dixon, J. B. 1981 . Synthesis and properties of poorly crystalline hydrated aluminous goethites. Clays & Clay Miner. 29: 91100.CrossRefGoogle Scholar
Francombe, M. H., and Rooksby, H. P. 1959 . Structure transformations effected by the dehydration of diaspore, goethite and delta ferric oxide. Clay Miner. Bulletin 21: 114.CrossRefGoogle Scholar
Goodman, B. A., and Lewis, D. G. 1981 . Mössbauer spectra of aluminous goethite (α-FeOOH). J. Soil Sci. 32: 351363.CrossRefGoogle Scholar
Goss, C. J., 1987. The kinetics and reaction mechanism of the goethite to hematite transformation. Miner. Mag. 51: 437451.CrossRefGoogle Scholar
Gregg, S. J., and Hill, K. J. 1953 . The production of active solids by thermal decomposition. Part II. Ferric oxide. J. Chem. Soc. IV: 39453951.CrossRefGoogle Scholar
Jónás, K., and Solymár, K. 1970 . Preparation, X-ray, derivatographic and infrared study of aluminium-substituted goethites. Acta Chim. Acad. Sci. Hung. 66: 383394.Google Scholar
Lewis, D. G., and Schwertmann, U. 1979 . The influence of Al on iron oxides. III. Preparation of Al-goethite in M KOH. Clay Miner. 14: 115126.CrossRefGoogle Scholar
Lewis, D. G., and Schwertmann, U. 1980 . The effect of [OH] on the goethite produced from ferrihydrite under alkaline conditions. J. Colloid Interface Sci. 78: 543553.CrossRefGoogle Scholar
Lim-Nunez, R. S. L., 1985. Synthesis and acid dissolution of metal-substituted goethites and hematites: MSc. thesis. Department of Soil and Plant Nutrition, U.W.A., Nedlands, 6009, pp. 104121.Google Scholar
Mackenzie, R. C., and Berggren, G. . Oxides and hydroxides of higher valence elements. In Differential Thermal Analysis 1. Mackenzie, R. C., 1970 ed. New York: Academic Press, 271302.Google Scholar
McKeague, J. A., and Day, J. H. 1966 . Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46: 1322.CrossRefGoogle Scholar
Naono, H., and Fujiwara, R. 1980 . Micropore formation due to thermal decomposition of acicular microcrystals of α-FeOOH. J. Colloid Interface Sci. 73: 406415.CrossRefGoogle Scholar
Novak, G. A., and Colville, A. A. 1989 . A practical interactive least-squares cell-parameter program using an electronic spreadsheet and a personal computer. Amer. Miner. 74: 488490.Google Scholar
Okamoto, G., Furuichi, R., and Sato, N. 1967 . Chemical reactivity and electrical conductivity of hydrous ferric oxide. Electrochim. Acta 12: 12871299.CrossRefGoogle Scholar
Perinet, G., and Lafont, R. 1972a . Sur le paramétres cristallographiques des hématites aluminineuses. C. R. Acad. Sci. 275: 10211024.Google Scholar
Perinet, G., and Lafont, R. 1972b . Sur la présence d'hématite aluminineuses désordonée dans des bauxites du Var. C. R. Acad. Sci. 274: 272274.Google Scholar
Rendon, J. L., Cornejo, J., Dearambarri, P., and Serna, C. J. 1983 . Pore structure of thermally treated goethite (α-FeOOH). J. Colloid Interface Sci. 92: 508516.CrossRefGoogle Scholar
Schulze, D. G., 1982. The identification of iron oxides by differential X-ray diffraction and the influence of aluminum substitution on the structure of goethite: Ph.D. thesis. Lehrstuhl für Bodenkunde der Technischen Universität München, Weihenstephan.Google Scholar
Schulze, D. G., 1984. The influence of aluminum on iron oxides. VIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them. Clay & Clay Miner. 32: 3644.CrossRefGoogle Scholar
Schulze, D. G., and Schwertmann, U. 1984 . The influence of aluminium on iron oxides: X. Properties of Al-substituted goethites. Clay Miner. 19: 521539.CrossRefGoogle Scholar
Schulze, D. G., and Schwertmann, U. 1987 . The influence of aluminium on iron oxides: XIII. Properties of goethites synthesised in 0.3 M KOH at 25°C. Clay Miner. 22: 8392.CrossRefGoogle Scholar
Schwertmann, U., Cambier, P., and Murad, E. 1985 . Properties of goethites of varying crystallinity. Clays & Clay Miner. 33: 369378.CrossRefGoogle Scholar
Schwertmann, U., Fitzpatrick, R. W., Taylor, R. M., and Lewis, D. G. 1979 . The influence of aluminium on iron oxides. Part II. Preparation and properties of Al-substituted hematites. Clays & Clay Miner. 27: 105112.CrossRefGoogle Scholar
Singh, B., and Gilkes, R. J. 1992 . XPAS: An interactive computer program for analysis of X-ray powder diffraction patterns. Powder Diffraction 7: 610.CrossRefGoogle Scholar
Stanjek, H., and Schwertmann, U. 1992 . The influence of aluminium on iron oxides. Part XVI: Hydroxyl and aluminium substitution in synthetic hematites. Clays & Clay Miner. 40: 347354.CrossRefGoogle Scholar
Taylor, M. R., and Schwertmann, U. 1978 . The influence of aluminium on iron oxides. Part I. The influence of Al on Fe oxide formation from the Fe (II) system. Clays & Clay Miner. 26: 373383.CrossRefGoogle Scholar
Thiel, R., 1963. Zum system α-FeOOH-α-AlOOH. Z. Anorg. Allg. Chem. 326: 7078.CrossRefGoogle Scholar
Watari, F., Landuyt, J. van, Delavignette, P., and Amelinckx, S. 1979 . Electron microscopic study of dehydration transformations I. Twin formation and mosaic structure in hematite derived from goethite. J. Solid State Chem. 29: 137150.CrossRefGoogle Scholar
Watari, F., Delavignette, P., Landuyt, J. van, and Amelinckx, S. 1983 . Electron microscopic study of dehydration transformations III. High resolution observation of the reaction process FeOOH → Fe2O3. J. Solid State Chem. 48: 4964.CrossRefGoogle Scholar
Wells, M. A., Gilkes, R. J., and Anand, R. R. 1989 . The formation of corundum and aluminous hematite by the thermal dehydroxylation of aluminous goethite. Clay Miner. 24: 513530.CrossRefGoogle Scholar
Wolska, E., 1981. The structure of hydrohematite. Z. Kristallographie 154: 6975.Google Scholar
Wolska, E., and Schwertmann, U. 1989 . Nonstoichiometric structures during dehydroxylation of goethite. Z. Kristallographie 189: 223237.Google Scholar
Wolska, E., and Szajda, W. 1985 . Structural and spectroscopic characteristics of synthetic hydrohematite. J. Mater. Sci. 20: 44074412.CrossRefGoogle Scholar