Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-26T15:00:05.321Z Has data issue: false hasContentIssue false

Crystal Chemistry and Surface Configurations of Two Iron-Bearing Trioctahedral Mica-1M Polytypes

Published online by Cambridge University Press:  01 January 2024

Chiara Elmi
Affiliation:
Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Largo S. Eufemia 19, 41121, Modena, Italy
Maria Franca Brigatti
Affiliation:
Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Largo S. Eufemia 19, 41121, Modena, Italy
Stephen Guggenheim*
Affiliation:
Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 West Taylor Street, 60607-7059, Chicago, Illinois, USA
Luca Pasquali
Affiliation:
Dipartimento di Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125, Modena, Italy IOM INFM-CNR Area Science Park, Building MM, S.S. 14, Km 163.5, 34012, Basovizza, (TS), Italy
Monica Montecchi
Affiliation:
Dipartimento di Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125, Modena, Italy IOM INFM-CNR Area Science Park, Building MM, S.S. 14, Km 163.5, 34012, Basovizza, (TS), Italy
Stefano Nannarone
Affiliation:
Dipartimento di Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vignolese 905, 41125, Modena, Italy IOM INFM-CNR Area Science Park, Building MM, S.S. 14, Km 163.5, 34012, Basovizza, (TS), Italy
*
*E-mail address of corresponding author: xtal@uic.edu

Abstract

The crystal chemical features of the bulk and the uppermost (001) surface layers of freshly cleaved surfaces of two trioctahedral Fe-rich mica-1M (space group C2/m) polytypes, i.e. a tetraferriphlogopite from an alkaline-carbonatitic complex near Tapira, Belo Horizonte, Minas Gerais, Brazil, and an Fe2+-bearing phlogopite containing less tetrahedral Fe3+ from the Kovdor carbonatite-bearing, alkaline-ultrabasic complex, Kola Peninsula, Russia, are explored here. Mineral-surface effects were investigated by X-ray Photoelectron Spectroscopy (XPS) and compared to the bulk structure derived from single-crystal X-ray diffraction data. Based on microprobe analysis and the X-ray study, the chemical formulae are [XII](K0.99)[VI](Fe0.082+Fe0.153+Mg2.76Ti0.01)[IV](Fe0.823+Si3.18)O10.37F0.24(OH)1.39 and [XII](K0.94Na0.06)[VI](Fe0.172+Fe0.053+Mg2.75Mn0.01Ti0.05)[IV](Fe0.163+Al0.84Si3.00)O10.21F0.35(OH)1.44 for tetraferriphlogopite and Fe-bearing phlogopite, respectively. The tetrahedrally coordinated sites of the two minerals differ, where Fe-for-Si substitution is at 20.5% in tetra-ferriphlogopite and at 4% in Fe-bearing phlogopite.

The bulk study showed that Fe3+ substitution increases the tetrahedral sheet thickness and the mean tetrahedral edge lengths in tetra-ferriphlogopite compared to Fe-bearing phlogopite. The tetrahedral rotation angle (α) changes remarkably from tetra-ferriphlogopite (α = 10.5°) to the Fe-bearing phlogopite (α = 8.5°), thus indicating a significantly greater initial lateral sheet misfit (leading to a greater tetrahedral ring distortion) between the tetrahedral and the octahedral sheets in the tetra-ferriphlogopite compared to Fe-bearing phlogopite. The Fe3+ substitution for Si and the differences in lateral dimensions of the tetrahedral and octahedral sheets affect the tetrahedral flattening angle (τ), with τ = 109.9° for tetraferriphlogopite and τ = 110.7° for Fe-bearing phlogopite.

The binding energy (BE) of photoelectron peaks in XPS is dependent on the chemical state of atoms and on their local environment at the near surface. The Mg in both phlogopites is bonded to F, with the BE of Mg1s increasing as coordinated oxygen atoms are substituted by fluorine. For Fe-rich phlogopite (BE = 1306.8 eV), the binding energy is greater than for tetra-ferriphlogopite (BE = 1305.9 eV), and this is consistent with the bulk composition having greater F-for-OH substitution in Fe-rich phlogopite (F0.35vs. tetra-ferriphlogopite, F0.24 atoms per formula unit).

Type
Article
Copyright
Copyright © Clay Minerals Society 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W., 1984 Crystal chemistry of the true micas Micas 13 1360.CrossRefGoogle Scholar
Barr, T.L. Seal, S. Wozniak, K. and Klinowaki, J., 1997 ESCA studies of the coordination state of aluminum in oxide environments Journal of Chemical Society, Faraday Transactions 93 181186.CrossRefGoogle Scholar
Bhattacharyya, K.G., 1993 XPS study of mica surfaces Journal of Electron Spectroscopy and Related Phenomena 63 289306.CrossRefGoogle Scholar
Biino, G.G. and Gröning, P., 1998 Cleavage mechanism and surface chemical characterization of phengitic muscovite and muscovite as constrained by X-ray photoelectron spectroscopy Physics and Chemistry of Minerals 25 168181.CrossRefGoogle Scholar
Biino, G.G. and Gröning, P., 1998 X-ray photoelectron spectroscopy (XPS) used as a structural and chemical surface probe on aluminosilicates minerals European Journal of Mineralogy 10 423437.CrossRefGoogle Scholar
Biino, G.G. Mannella, N. Kay, A. Mun, B. and Fadley, C., 1999 Surface chemical characterization and surface diffraction effects of real margarite (001): An angle-resolved XPS investigation American Mineralogist 84 629638.CrossRefGoogle Scholar
Brigatti, M.F. and Guggenheim, S., 2002 Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models Micas: Crystal Chemistry and Metamorphic Petrology 46 197.Google Scholar
Brigatti, M.F. Medici, L. and Poppi, L., 1996 Refinement of the structure of natural ferriphlogopite Clays and Clay Minerals 44 540545.CrossRefGoogle Scholar
Brigatti, M.F. Medici, L. Saccani, E. and Vaccaro, C., 1996 Crystal-chemistry and petrologic significance of Fe3+-rich phlogopite from the Tapira carbonatite complex, Brazil American Mineralogist 81 913927.CrossRefGoogle Scholar
Brigatti, M.F. Lalonde, A.E. Medici, L., Kodama, H. Mermut, A.R. and Torrance, K., 1999 Crystal chemistry of [4]Fe3+-rich phlogopites: a combined single-crystal X-ray and Mössbauer study Clays for our Future 317327.Google Scholar
Brigatti, M.F. Medici, L. and Poppi, L., 2001 Crystal chemistry of trioctahedral micas-1M from the Alto Paranaíba igneous province, southeastern Brazil The Canadian Mineralogist 39 1933–1345.CrossRefGoogle Scholar
Brigatti, M.F. Guidotti, C.V. Malferrari, D. and Sassi, F.P., 2008 Single-crystal X-ray studies of trioctahedral micas coexisting with dioctahedral micas in metamorphic sequences from western Maine American Mineralogist 93 396408.CrossRefGoogle Scholar
Brigatti, M.F. Malferrari, D. Laurora, A. and Elmi, C., 2011 Structure and mineralogy of layer silicates: recent perspectives and new trends Layered Mineral Structures and their Application in Advanced Technologies 11 171.Google Scholar
Brod, J.A. Gaspar, J.C. de Araújo, D.P. Gibson, S.A. Thompson, R.N. and Junqueira-Brod, T.C., 2001 Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral-chemistry systematics Journal of Asian Earth Sciences 19 265296.CrossRefGoogle Scholar
Bronold, M. Tomm, Y. and Jaegermann, W., 1992 Surface states on cubic d-band semiconductor pyrite (FeS2) Surface Science 314 L931L936.CrossRefGoogle Scholar
Bruker, 2003 SMART and SAINT-Plus, version 6.01 Madison, Wisconsin Bruker AXS Inc..Google Scholar
Cibin, C. Mottana, A. Marcelli, A. and Brigatti, M.F., 2005 Potassium coordination in trioctahedral micas investigated by K-edge XANES spectroscopy Mineralogy and Petrology 85 6787.CrossRefGoogle Scholar
Donnay, G. Morimoto, N. Takeda, H. and Donnay, J.D.H., 1964 Trioctahedral one-layer micas: I. Crystal structure of a synthetic iron mica Acta Crystallographica 17 13691373.CrossRefGoogle Scholar
Elmi, C. Brigatti, M.F. Pasquali, L. Montecchi, M. Laurora, A. Malferrari, D. and Nannarone, S., 2010 Crystal chemistry, surface morphology and X-ray photoelectron spectroscopy of Fe-rich osumilite from Mt. Arci, Sardinia (Italy) Physics and Chemistry of Minerals 37 561569.CrossRefGoogle Scholar
Elmi, C. Brigatti, M.F. Pasquali, L. Montecchi, M. Laurora, A. Malferrari, D. and Nannarone, S., 2011 High-temperature vesuvianite: crystal chemistry and surface considerations Physics and Chemistry of Minerals 38 459468.CrossRefGoogle Scholar
Elmi, C. Brigatti, M.F. Guggenheim, S. Pasquali, L. Montecchi, M. Laurora, A. Malferrari, D. and Nannarone, S., 2013 Sodian muscovite-2M 1: crystal chemistry and surface features The Canadian Mineralogist 51 319328.CrossRefGoogle Scholar
Fechtelkord, M. and Langner, R., 2013 Aluminum ordering and clustering in Al-rich synthetic phlogopite: The influence of fluorine investigated by {19F/1H} 29Si CPMAS NMR spectroscopy American Mineralogist 98 120131.CrossRefGoogle Scholar
Fechtelkord, M. Behrens, H. Holtz, F. Fyfe, C.A. Groat, L.A. and Raudsepp, M., 2003 Influence of F content on the composition of Al-rich synthetic phlogopite: Part I. New information on structure and phase-formation from 29Si, 1H, and 19F MAS NMR spectroscopies American Mineralogist 88 4753.CrossRefGoogle Scholar
Fechtelkord, M. Behrens, H. Holtz, F. Bretherton, J.L. Fyfe, C.A. Groat, L.A. and Raudsepp, M., 2003 Influence of F content on the composition of Al-rich synthetic phlogopite: Part II. Probing the structural arrangement of aluminum in tetrahedral and octahedral layers by 27Al MQMAS and 1H/19F-27Al HETCOR and REDOR experiments American Mineralogist 88 10461054.CrossRefGoogle Scholar
Ferraris, G. Gula, A. Ivaldi, G. Nespolo, M. Sokolova, E. Uvarova, Y. and Khomyakov, A.P., 2001 First structure determination of a MDO-2O mica polytype associated with a 1M polytype European Journal of Mineralogy 13 10131023.CrossRefGoogle Scholar
Fleet, M.E., 2003 Rock-Forming Minerals, Volume 3A. Sheet Silicates: Micas 2nd edition London Geological Society.Google Scholar
Foley, S.F., 1989 Experimental constraints on phlogopites chemistry in lamproites: 2. The effect of pressure-temperature variations European Journal of Mineralogy 2 327341.CrossRefGoogle Scholar
Grosvenor, A.P. Kobe, B.A. Biesinger, M.C. and McIntyre, N.S., 2004 Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds Surface and Interface Analysis 36 15641574.CrossRefGoogle Scholar
Guggenheim, S., 2011 An overview of order/disorder in hydrous phyllosilicates Layered Mineral Structures and their Application in Advanced Technologies 11 72111.Google Scholar
Hasha, D. de Saldarriaga, L. Saldarriaga, C. Hathway, P.E. Cox, D.F. and Davis, M., 1988 Studies of silicoalumino-phosphates with the sodalite structure Journal of the American Chemical Society 110 21272135.CrossRefGoogle Scholar
Haycock, D.E. Kasrai, M. Nicholls, C.J. and Urch, D.S., 1978 The electronic structure of magnesium hydroxide (brucite) using X-ray emission, X-ray photoelectron, and auger spectroscopy Journal of the Chemical Society, Dalton Transactions 12 17911796.CrossRefGoogle Scholar
Johns, W.D. and Gier, S., 2001 X-ray photoelectron spectroscopic study of layer charge magnitude in micas and illitesmectite clays Clay Minerals 36 355367.CrossRefGoogle Scholar
Krasnova, N.I., 2001 The Kovdor phlogopite deposit, Kola Peninsula, Russia The Canadian Mineralogist 39 3344.CrossRefGoogle Scholar
Lalonde, A.E. Rancourt, D.G. and Chao, G.Y., 1991 Febearing trioctahedral micas from Mont Saint-Hilaire, Québec, Canada Mineralogical Magazine 60 447460.CrossRefGoogle Scholar
Laurora, A. Malferrari, D. Brigatti, M.F. Mottana, A. Caprilli, E. Giordano, G. and Funiciello, R., 2009 Crystal chemistry of trioctahedral micas in the top sequences of the Colli Albani volcano, Roman Region, Central Italy Lithos 113 507520.CrossRefGoogle Scholar
Meyrowitz, R., 1970 New semi-microprocedure for determination of ferrous iron in refractory silicate minerals using a sodium metafluoborate decomposi t ion Analytical Chemistry 42 11101113.CrossRefGoogle Scholar
Mittal, V.K. Bera, S. Nithya, R. Srinivasan, M.P. Velmurugan, S. and Narasimhan, S.V., 2004 Solid state synthesis of Mg-Ni ferrite and characterization by XRD and XPS Journal of Nuclear Materials 335 302310.CrossRefGoogle Scholar
Reguir, E.P. Chakhmouradian, A.R. Halden, N.M. Malkovets, V.G. and Yanga, P., 2009 Major- and traceelement compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator Lithos 112S 372384.CrossRefGoogle Scholar
Schoonheydt, R.A. and Johnston, C.T., 2011 The surface properties of clay minerals Layered Mineral Structures and their Application in Advanced Technologies 11 337373.Google Scholar
Seyama, H. and Soma, M., 1984 X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 80 237248.CrossRefGoogle Scholar
Seyama, H. and Soma, M., 1987 Fe2p spectra of silicate minerals Journal of Electron Spectroscopy and Related Phenomena 42 97101.CrossRefGoogle Scholar
Sheldrick, G.M., 1996 SADABS Germany University of Göttingen.Google Scholar
Sheldrick, G.M., 1997 SHELXL97. Program for the Refinement of Crystal Structures Germany University of Göttingen.Google Scholar
Shirley, D.A., 1972 Effect of atomic and extra-atomic relaxation on atomic binding energies Chemical and Physical Letters 16 220–5.CrossRefGoogle Scholar
Wagner, C.D. Passoja, D.E. Hillery, H.F. Kinisky, T.G. Six, H.A. Jansen, W.T. and Taylor, J.A., 1982 Auger and photoelectron line energy relationship in aluminum-oxygen and silicon-oxygen compounds Journal of Vacuum Science and Technology 21 933944.CrossRefGoogle Scholar
Weiss, Z. Rieder, M. and Chmielovà, M., 1992 Deformation of coordination polyhedra and their sheets in phyllosilicates European Journal of Mineralogy 4 665682.CrossRefGoogle Scholar
Zakaznova-Herzog, V.P. Nesbitt, H.W. Bancroft, G.M. and Tsese, J.S., 2008 Characterization of leached layers on olivine and pyroxenes using high-resolution XPS and density functional calculations Geochimica et Cosmochimica Acta 72 6986.CrossRefGoogle Scholar