Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-10T22:32:45.353Z Has data issue: false hasContentIssue false

Complexes of Diethylenetriamine (Dien) and Tetraethylenepentamine (Tetren) with Cu(II) and Ni(II) on Hectorite

Published online by Cambridge University Press:  01 July 2024

Robert A. Schoonheydt
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030, Leuven (Heverlee), Belgium
Firmin Velghe
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030, Leuven (Heverlee), Belgium
Rita Baerts
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030, Leuven (Heverlee), Belgium
Jan B. Uytterhoeven
Affiliation:
Centrum voor Oppervlaktescheikunde en Colloïdale Scheikunde, Katholieke Universiteit Leuven, De Croylaan 42, B-3030, Leuven (Heverlee), Belgium

Abstract

The nature of the complexes in aqueous solutions of Cu(II) and Ni(II) with diethylenetriamine (dien) and tetraethylenepentamine tetren) is pH-dependent. At M(II):dien = 2 and M(II):tetren = 1, the main complexes are [M(dien H)2(H2O)2]4+ and [M(tetren H)(H2O)2]3+. In excess ligand (pH = 10.30), the majority species are [M(dien)2]2+ and [M(tetren)(H2O)]2+, and considerable amounts of monoprotonated amines are adsorbed. The surface of hectorite prefers the tetragonally distorted complexes in all cases studied. The complexes readily lose their axially coordinated water molecules to form planar complexes on the interlamellar surface. The planar Ni(II)-complexes are diamagnetic, showing that the surface is a very weak axial ligand. The divalent complexes [M(dien)2]2+ and [M(tetren)(H2O]2+ can also be partially transformed to the corresponding planar forms on the surface, especially in the case of [Cu(dien)2]2+. The driving forces are thought to be the acid nature of the clay-adsorbed water and the gain in crystal field stabilization energy of the transition metal ions.

Резюме

Резюме

Природа соединений в водных растворах Сu(II) и Ni(II) с диэтилентриамином (диен) и тетраэтиленпентамином (тетрен) зависит от рН. При М(II):диен = 2 и М(II):тетрен = 1, главными соединениями являются [М(диен Н)22O)2]4+ и М(тетрен Н)(Н2O)2]3+. При избытке лиганда (рН = 10,30) большинство соединений представляют собой [М(диен)2]2+ и [М(тетрен) (Н2O)]2+, при этом адсорбируются значительные количества монопротоновых аминов. Во всех исследованных случаях поверхность гекторита предпочитает тетрагонально искаженные соединения. Эти комплексы легко теряют свои координированные по оси водные молекулы, образуя плоские соединения на межслойной поверхности. Плоские Ni(II)-соединения являются диамагнитными, указывая, что поверхность образована очень слабым осевым лигандом. Двухвалентные соединения [М(диен)2]2+ и [М(тетрен) (Н2O)]2+ также могут быть частично преобразованы на поверхности в соответствующие плоские формы, особенно в случае [Си(диен)2]2+. Предполагается, что движущими силами являются кислотная природа адсорбированной глиной воды и увеличение в поле кристалла стабилизационной энергии ионов переходных металлов.

Resümee

Resümee

Die Natur der Cu(II) und Ni(II) Komplexe mit diäthylentriamin (dien) und tetraäthylen-pentamin (tetren) in wäßrigen Lösungen ist pH abhängig. Bei M(II):dien = 2 und M(II):tetren = 1 sind die hauptsächlichen Komplexe [M(dien H)2(H2O)2]4+ und [M(tetren H)(H2O)2]3+. Bei Überschuß an Ligand (pH = 10,3) sind die Hauptsorten [M(dien)2]2+ und [M(tetren)(H2Ö)]2+ und beträchtliche Mengen monoprotonierter Amine werden adsorbiert. Die Oberfläche des Hektorit bevorzugt in allen untersuchten Fällen die tetraädrisch verformten Komplexe. Die Komplexe verlieren ihre axial koordinierten Wasser Moleküle, um planare Komplexe auf der interlamellaren Oberfläche zu formen. Die planaren Ni(II)-Komplexe sind diamagnetisch und zeigen, daß die Oberfläche ein sehr schwacher axialer Ligand ist. Die divalenten Komplexe [M(dien)2]2+ und [M(tetren)(H2O)]2+ können auch teilweise auf der Oberfläche in die entsprechenden planaren Formen übergehen, besonders im Falle von [Cu(dien)2]2+. Die saure Natur des auf Ton adsorbierten Wassers und die Zunahme in Kristallfeldstabilisierungs-energie der Übergangsmetallionen werden als treibende Kräfte angenommen.

Résumé

Résumé

La nature des complexes en solutions aqueuses de Cu(II) et de Ni(II) avec la diethylene-triamine (dien) et la tétraethylenepentamine (tetren) est dépendante du pH. Pour M(II):dien = 2 et M(II):tetren = 1, les complexes principaux sont [M(dien H)2(H2O)2]4+ et [M(tetren H)(H2O)2]3+. En excès de ligand (pH = 10.30), les espèces majoritaires sont [M(dien)2]2+ et [M(tetren)(H2O)]2+, et des quantités considérables d'aminés monoprotonées sont adsorbées. La surface d'hectorite préfère les complexes déformés tétragonalement dans tous les cas étudiés. Les complexes perdent aisément leurs molécules d'eau coordonnées axialement pour former des complexes planes sur la surface interfeuillet. Les complexes planes Ni(II) sont diamagnétiques, montrant que la surface est un ligand axial très faible. Les complexes divalents [M(dien)2]2+ et [M(tetren)(H2O)]2+ peuvent aussi être partiellement transformés en les formes planes correspondantes sur la surface, surtout dans le cas de [Cu(dien)2]2+. On pense que les forces motrices sont la nature acide de l'eau adsorbée par l'argile et le gain d’énergie de stabilisation du champ cristallin par les ions du métal de transition.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cloos, P. and Laura, R. D. (1972) Adsorption of ethylenediammine (EDA) on montmorillonite saturated with different cations. II. Hydrogen- and ethylenediammonium-montmorillonite: protonation and hydrogen bonding: Clays & Clay Minerals 20, 259270.CrossRefGoogle Scholar
Cremers, A., Peigneur, P., and Maes, A. (1979) Werkwijze voor het verwiijderen van metalen uit oplossingen: Belgisch patent 0839637, in press.Google Scholar
Donini, J. C., Hollebone, B. R., and Lever, A. B. P. (1968) Existence of 3Eg ground terms in tetragonal d8 complexes and the possibility of high-spin square-planar nickel(II): J. Am. Chem. Soc. 93, 64556462.CrossRefGoogle Scholar
Donini, J. C., Hollebone, B. R., London, G., Lever, A. B. P., and Hempel, J. C. (1975) Application of the normalized spherical harmonic (NSH) Hamiltonian and of ground-state energy space diagrams to the tetragonal field: Inorg. Chem. 14, 455461.CrossRefGoogle Scholar
Endicott, J. F., Ferraudi, G. J., and Barber, J. R. (1975) Charge transfer spectroscopy, redox energetics and photoredox behavior of transition metal ammine complexes. A critical comparison of observations with mechanisms and models: J. Phys. Chem. 79, 630643.CrossRefGoogle Scholar
Fripiat, J. J. (1971) Some applications of nuclear magnetic resonance to surface chemistry: Catal. Rev. 5, 269282.CrossRefGoogle Scholar
Hathaway, B. J., Bew, M. J., Billing, D. E., Dudley, R. J., and Nicholls, P. (1969b) Electronic and electron spin resonance spectra of dihydrogenethylenediaminetetra-acetatoaquocopper(II) and bis (diethylenetriamine) copper(II) bromide monohydrate: J. Chem. Soc. A, 23122318.CrossRefGoogle Scholar
Hathaway, B. J. and Billing, D. E. (1970) The electronic properties and stereochemistry of the mono-nuclear complexes of the copper(II) ion: Coord. Chem. Rev. 5, 143207.CrossRefGoogle Scholar
Hathaway, B. J., Billing, D. E., Nicholls, P., and Procter, I. M. (1969a) The crystal field energy levels of some bis (ethylenediammine) copper(II) complexes: J. Chem. Soc. A., 319325.CrossRefGoogle Scholar
Hathaway, B. J. and Tomlinson, A. A. S. (1970) Copper(II) ammonia complexes: Coord. Chem. Rev. 5, 143.CrossRefGoogle Scholar
Jonassen, H. B., Bertrand, J. A., Groves, F. R. Jr., and Stearns, R. J. (1957) Inorganic complex compounds containing polydentate groups. XVI. A study of the complex ions formed by the copper(II) ion with triethylenetetramine, tetraethylenepentamine and pentaethylenehexamine: J. Am. Chem. Soc. 79, 4279.CrossRefGoogle Scholar
Kennedy, B. P. and Lever, A. B. P. (1973) Charge-transfer spectra of bis(diamine) copper(II) complexes and their correlation with other electronic, vibrational and thermodynamic properties: J. Am. Chem. Soc. 95, 69076913.CrossRefGoogle Scholar
Lever, A. B. P. (1968a) Inorganic Electronic Spectroscopy: Elsevier, Amsterdam , 333349.Google Scholar
Lever, A. B. P. (1968b) The electronic spectra of tetragonal metal complexes: analysis and significance: Coord. Chem. Rev. 3, 119140.CrossRefGoogle Scholar
Maes, A., Marijnen, P., and Cremers, A. (1977) Stability of metal uncharged ligand complexes in ion exchangers. I. Quantitative characterization and thermodynamic basis: J. Chem. Soc. Faraday Trans. I 73, 12971301.CrossRefGoogle Scholar
Maes, A., Peigneur, P., and Cremers, A. (1978) Stability of metal uncharged ligand complexes in ion exchangers. 2. The copper + ethylenediamine complex in montmorillonite and sulphonic acid resin: J. Chem. Soc. Faraday Trans. I 74, 182189.CrossRefGoogle Scholar
Martin, L. T., Sperati, C. R., and Busch, D. H. (1977) The spectrochemical properties of tetragonal complexes of high spin nickel (II) containing macrocyclic ligands: J. Am. Chem. Soc. 99, 29682981.CrossRefGoogle Scholar
Peigneur, P., Maes, A., and Cremers, A. (1979) Ion exchange of the poly-ammine complexes of some transition metal ions in montmorillonite: Proc. 6th Int. Clay Conf. Oxford, 1978, 207216.Google Scholar
Poinsignon, C., Cases, J. M., and Fripiat, J. J. (1978) Electrical polarization of water molecules adsorbed by smectites. An infrared study: J. Phys. Chem. 82, 18551860.CrossRefGoogle Scholar
Procter, I. M., Hathaway, B. J., and Nicholls, P. (1968) The electronic properties and stereochemistry of the copper(II) ion. 1. Bis(ethylenediammine)copper(II) complexes: J. Chem. Soc. A, 19781984.Google Scholar
Schoonheydt, R. A. (1978) Analysis of the electron paramagnetic resonance spectra of bis(ethylenediamine)copper(II) on the surfaces of zeolites X and Y and of a Camp Berteau montmorillonite: J. Phys. Chem. 82, 497498.CrossRefGoogle Scholar
Schoonheydt, R. A., Velghe, F. and Uytterhoeven, J. B. (1979) Characterization of Ni(en)x2+ (x = 1, 2, or 3; en = ethylenediammine) on the surface of montmorillonites: Inorg. Chem., in press.CrossRefGoogle Scholar
Sillén, S. L. and Martell, A. E. (1964) Stability Constants of Metal Ion Complexes: The Chemical Society, London, pp. 334, 546.Google Scholar
Stephens, F. S. (1969) Structures of diethylenetriamine copper(II) cations. 1. Crystal structure of bis(diethylenetriamine) copper(II) nitrate: J. Chem. Soc. A, 883890.Google Scholar
Touillaux, R., Salvador, P., Vandermeersche, C., and Fripiat, J. J. (1968) Study of water layers adsorbed on Na- and Ca-montmorillonite by the pulsed nuclear magnetic resonance technique: Isr. J. Chem. 6, 337348.CrossRefGoogle Scholar
Velghe, F., Schoonheydt, R. A., and Uytterhoeven, J. B. (1977a) The co-ordination of hydrated Cu(II)- and Ni(II)-ions on montmorillonite surface: Clays & Clay Minerals 25, 375380.CrossRefGoogle Scholar
Velghe, F., Schoonheydt, R. A., Uytterhoeven, J. B., Peigneur, P., and Lunsford, J. H. (1977b) Spectroscopic characterization and thermal stability of copper(II) ethylenediamine complexes on solid surfaces. 2. Montmorillonite: J. Phys. Chem. 81, 11871194.CrossRefGoogle Scholar