Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-30T19:17:46.652Z Has data issue: false hasContentIssue false

Clay and Fe (oxyhydr)oxide mineralogy in the basalt weathering profile in Hainan (southern China): implications for pedogenesis process

Published online by Cambridge University Press:  26 July 2024

Hanlie Hong*
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, China State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
Jiawei Wang
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, China
Chaowen Wang
Affiliation:
Gemmological Institute, China University of Geosciences, Wuhan, Hubei, China
Chen Liu
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, China
Thomas J. Algeo
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China
Lulu Zhao
Affiliation:
School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, China
Lian Zhou
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China
Daqian Zhang
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China
Qian Fang
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
*
Corresponding author: Hanlie Hong; Email: honghl8311@aliyun.com

Abstract

In order to gain a better understanding of clay and Fe (oxyhydr)oxide minerals formed during pedogenesis of basalts in tropical monsoonal Hainan (southern China), a basalt-derived lateritic soil at Nanyang, Hainan, was investigated comprehensively. The results show that the lateritic regolith consists uniformly of kaolinite and Fe (oxyhydr)oxide minerals, with trace gibbsite only in the AE horizon. Abundant dioctahedral smectite in the basalt bedrock formed due to primary hydrothermal alteration, and transformed to kaolinite rapidly in the highly weathering saprolite horizon. The ‘crystallinity’ of kaolinite is notably low and its Hinckley index fluctuates along the soil profile, resulting from intense ferrolysis due to fluctuations between wet/dry climate conditions. From the base to the top of the profile, maghemite shows a decreasing trend, whereas magnetite, hematite, and goethite exhibit a slightly increasing trend, indicating that maghemite formed as an initial product of basalt weathering. Formation of Fe (oxyhydr)oxide species in basalt-derived soil is mainly controlled by local environmental conditions such as soil moisture, redox, and acidic conditions; thus, iron mineral-based paleoclimatic proxies could not be used for subtropical to tropical soils. The highly weathered saprolite has a similar δ56Fe value (+0.06‰) to that (+0.07‰) of the parent rock, while the AE to middle E horizons have greater δ56Fe values of +0.12‰ to +0.19‰. Fe isotopic signatures correlate positively with the Fe mass transfer coefficient (R2=0.77, n=6, ρ<0.05), indicating repetitive weathering and relative accumulation of isotopically heavier Fe in the upper soil horizons, which occurred by reductive dissolution of organic matter under oxic conditions, as reflected by the greater U/Th.

Type
Original Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, I.A.M., & Maher, B.A. (2018). Identification and paleoclimatic significance of magnetite nanoparticles in soils. Proceedings of the National Academy of Sciences of the USA, 115, 17361741.CrossRefGoogle ScholarPubMed
April, R.H., Keller, D., & Driscoll, C.T. (2004). Smectite in Spodosols from the Adirondack Mountains of New York. Clay Minerals, 39, 99103.CrossRefGoogle Scholar
Ayoubi, S., & Adman, V. (2019). Iron mineralogy and magnetic susceptibility of soils developed on various rocks in western Iran. Clays and Clay Minerals, 67, 217227.CrossRefGoogle Scholar
Basile-Doelsch, I., Balesdent, J., & Pellerin, S. (2020). Reviews and syntheses: the mechanisms underlying carbon storage in soil. Biogeosciences, 17, 52235242.CrossRefGoogle Scholar
Beard, B.L., Johnson, C.M., Skulan, J.L., Nealson, K.H., Cox, L., & Sun, H. (2003). Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chemical Geology, 195, 87117.CrossRefGoogle Scholar
Biddle, D.L., Chittleborough, D.J., & Fitzpatrick, R.W. (1998). An algorithm to model mass balances quantitatively. Computers & Geosciences, 24, 7782.CrossRefGoogle Scholar
Borker, J., Hartmann, J., Romero-Mujalli, G., & Li, G.J. (2019). Aging of basalt volcanic systems and decreasing CO2 consumption by weathering. Earth Surface Dynamics, 7, 191197.CrossRefGoogle Scholar
Brantley, S. L., Shaughnessy, A., Lebedeva, M. I., & Balashov, V. N. (2023). How temperature-dependent silicate weathering acts as Earth’s geological thermostat. Science, 379, 382389.CrossRefGoogle ScholarPubMed
Brimhall, G.H., & Dietrich, W.E. (1987). Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51, 567587.CrossRefGoogle Scholar
Campodonico, V.A., Pasquini, A.I., Lecomte, K.L., García, M.G., & Depetris, P.J. (2019). Chemical weathering in subtropical basalt-derived laterites: a mass balance interpretation (Misiones, NE Argentina). Catena, 173, 352366.CrossRefGoogle Scholar
Caner, L., Radtke, L.M., Vignol-Lelarge, M.L., Inda, A.V., Bortoluzzi, E.C., & Mexias, A.S. (2014). Basalt and rhyo-dacite weathering and soil clay formation under subtropical climate in southern Brazil. Geoderma, 235–236, 100112.CrossRefGoogle Scholar
Cervi, E.C., da Costa, A.C.S., & de Souza Junior, I.G. (2014). Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt. Journal of Applied Geophysics, 111, 377383.CrossRefGoogle Scholar
Chadwick, O.A., Gavenda, R.T., Kelly, E.F., Ziegler, K., Olson, C.G., Elliot, W.C., & Hendricks, D.M. (2003). The impact of climate on the biogeochemical functioning of volcanic soils. Chemical Geology, 202, 195223.CrossRefGoogle Scholar
Christidis, G.E. (1998). Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece. Clays and Clay Minerals, 46, 379399.CrossRefGoogle Scholar
Claudio, C., di Iorio, E., Liu, Q.S., Jiang, Z.X., & Barrón, V. (2017). Iron oxide nanoparticles in soils: environmental and agronomic importance. Journal of Nanoscience and Nanotechnology, 17, 44494460.CrossRefGoogle Scholar
Craddock, P.R., & Dauphas, N. (2011). Iron isotopic compositions of geological reference materials and chondrites. Geostandards and Geoanalytical Research, 35, 101123.CrossRefGoogle Scholar
da Costa, A.C., Bigham, J.M., Rhoton, F.E., & Traina, S.A. (1999). Quantification and characterization of maghemite in soils derived from volcanic rocks in southern Brazil. Clays and Clay Minerals, 47, 466473.CrossRefGoogle Scholar
da Silva, L.F., Fruett, T., Zinn, Y.L., Inda, A.V., & do Nascimento, P.C. (2019). Genesis, morphology and mineralogy of Planosols developed from different parent materials in southern Brazil. Geoderma, 341, 4658.CrossRefGoogle Scholar
Dauphas, N., John, S., & Rouxel, O. (2017). Iron isotope systematics. Reviews in Mineralogy and Geochemistry, 82, 415510.CrossRefGoogle Scholar
de Jong, E., Kozak, L.M., & Rostat, H.P.W. (1999). Effects of parent materials and climate on the magnetic susceptibility of Saskatchewan soils. Journal Soil Science, 80, 135142.Google Scholar
Dessert, C., Dupre, B., Gaillardet, J., Francois, L.M., & Allegre, C.J. (2003). Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202, 257273.CrossRefGoogle Scholar
Drever, J.I., & Stillings, L.L. (1997). The role of organic acids in mineral weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects 120, 167181.CrossRefGoogle Scholar
Driese, S.G. (2004). Pedogenic translocation of Fe in modern and ancient Vertisols and implications for interpretations of the Hekpoort Paleosol (2.25 Ga). Journal of Geology, 112, 543560.CrossRefGoogle Scholar
Dupré, B., Dessert, C., Oliva, P., Goddéris, Y., Viers, J., Francois, L., Millot, R., & Gaillardet, J. (2003). Rivers, chemical weathering and Earth’s climate. Comptes Rendus Geoscience, 335, 11411160.CrossRefGoogle Scholar
Egli, M., Nater, M., Mirabella, A., Raimondi, S., Plötze, M., & Alioth, L. (2008). Clay minerals, oxyhydroxide formation, element leaching and humus development in volcanic soils. Geoderma, 143, 101114.CrossRefGoogle Scholar
Fernández-Caliani, J.C., & Cantano, M. (2010). Intensive kaolinization during a lateritic weathering event in South-West Spain: mineralogical and geochemical inferences from a relict paleosol. Catena, 80, 2333.CrossRefGoogle Scholar
Geiss, C.E., Zanner, C.W., Banerjee, S.K., & Minott, J. (2004). Signature of magnetic enhancement in a loessic soil in Nebraska, United States of America. Earth and Planetary Science Letters, 228, 355367.CrossRefGoogle Scholar
Giorgis, I., Bonetto, S., Giustetto, R., Lawane, A., Pantet, A., Rossetti, P., Thomassin, J.H., & Vinai, R. (2014). The lateritic profile of Balkouin, Burkina Faso: geochemistry, mineralogy and genesis. Journal of African Earth Sciences, 90, 3148.CrossRefGoogle Scholar
Gíslason, S.R., Arnórsson, S., & Ármannsson, H. (1996). Chemical weathering of basalt in southwest Iceland: effects of runoff, age of rocks and vegetative/glacial cover. American Journal of Science, 296, 837907.CrossRefGoogle Scholar
Grimley, D.A., & Vepraskas, M.J. (2000). Magnetic susceptibility for use in delineating hydric soils. Soil Science Society of America Journal, 64, 21742180.CrossRefGoogle Scholar
Grogan, K.L., Gilkes, R.J., & Lottermoser, B.G. (2003). Maghemite formation in burnt plant litter at East Trinity, North Queensland, Australia. Clays and Clay Minerals, 51, 390396.CrossRefGoogle Scholar
Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Eberl, D.D., Formoso, M.L.L., Galán, E., Merriman, R.J., Peacor, D.R., Stanjek, H., & Watanabe, T. (2002). Report of the Association Internationale Pour l’étude des Argiles (AIPEA) Nomenclature Committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the ‘crystallinity index’. Clays and Clay Minerals, 50, 406409.CrossRefGoogle Scholar
He, Y., Li, D.C., Velde, B., Yang, Y.F., Huang, C.M., Gong, Z.T., & Zhang, G.L. (2008). Clay minerals in a soil chronosequence derived from basalt on Hainan Island, China and its implication for pedogenesis. Geoderma, 148, 206212.CrossRefGoogle Scholar
Hilton, R.G., & West, A.J. (2020). Mountains, erosion and the carbon cycle. Nature Reviews Earth & Environment, 1, 284299.CrossRefGoogle Scholar
Hinckley, D.N. (1962). Variability in ‘crystallinity’ values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229235.Google Scholar
Hong, H.L., Fang, Q., Cheng, L.L., Wang, C.W., & Churchman, G.J. (2016). Microorganism-induced weathering of clay minerals in a hydromorphic soil. Geochimica et Cosmochimica Acta, 184, 272288.CrossRefGoogle Scholar
Hong, H.L., Ji, K.P., Hei, H.T., Wang, C.W., Liu, C., Zhao, L.L., Lanson, B., Zhao, C.L., Fang, Q., & Algeo, T. J. (2023). Clay mineral evolution and formation of intermediate phases during pedogenesis on picrite basalt bedrock under temperate conditions (Yunnan, southwestern China). Catena, 220, 106677.CrossRefGoogle Scholar
Hu, X.F., Wei, J., Xu, L.F., Zhang, G.L., & Zhang, W.G. (2009). Magnetic susceptibility of the quaternary Red Clay in subtropical China and its paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 279, 216232.CrossRefGoogle Scholar
Huang, K.J., Teng, F.Z., Wei, G.J., Ma, J.L., & Bao, Z.Y. (2012). Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China. Earth and Planetary Science Letters, 359–360, 7383.CrossRefGoogle Scholar
Jiang, K., Qi, H.W., & Hu, R.Z. (2018). Element mobilization and redistribution under extreme tropical weathering of basalts from the Hainan Island, South China. Journal of Asian Earth Sciences, 158, 80102.CrossRefGoogle Scholar
Kardjilov, M.I., Gislason, S.R., & Gisladottir, G. (2006). The effect of gross primary production, net primary production and net ecosystem exchange on the carbon fixation by chemical weathering of basalt in northeastern Iceland. Journal of Geochemical Exploration, 88, 292295.CrossRefGoogle Scholar
Kiczka, M., Wiederhold, J.G., Frommer, J., Voegelin, A., Kraemer, S.M., Bourdon, B., & Kretzschmar, B. (2011). Iron speciation and isotope fractionation during silicate weathering and soil formation in an alpine glacier forefield chronosequence. Geochimica et Cosmochimica Acta, 75, 55595573.CrossRefGoogle Scholar
Klaes, B., Thiele-Bruhn, S., Woerner, W., Hoeschen, C., Mueller, C.W., Marx, P., Arz, H.W., Breuer, S., & Kilian, R. (2023). Iron (hydr)oxide formation in Andosols under extreme climate conditions. Scientific Reports, 13, article number: 2818.CrossRefGoogle ScholarPubMed
Krause, A.J., Sluijs, A., van der Ploeg, R., Lenton, T.M., & Pogge von Strandmann, P.A.E. (2023). Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum. Nature Geoscience, 16, 730738.CrossRefGoogle ScholarPubMed
Kovács, J. & Czigány, S. (2017). Soils and weathering. In Richardson, D., Castree, N., Goodchild, M.F., Kobayashi, A., Liu, W., & Marston, R.A. (eds), The International Encyclopedia of Geography, doi: 10.1002/9781118786352.wbieg0321. John Wiley & Sons, Ltd.Google Scholar
Lessovaia, S.N., Plotze, M., Inozemzev, S., & Goryachkin, S. (2016). Traprock transformation into clayey materials in soil environments of the Central Siberian Plateau, Russia. Clays and Clay Mineral, 64, 668676.CrossRefGoogle Scholar
Li, G.J., Hartmann, J., Derry, L.A., West, A.J., You, C.F., Long, X.Y., Zhan, T., Li, L.F., Li., G., Qiu, W.H., Li, T., Liu, L.W., Chen, Y., Ji, J.F., Zhao, L., & Chen, J. (2016). Temperature dependence of basalt weathering. Earth and Planetary Science Letters, 443, 5969.CrossRefGoogle Scholar
Li, M., He, Y., Kang, J., Yang, X., He, Z., Yu, H., & Huang, F. (2017). Why was iron lost without significant isotope fractionation during the lateritic process in tropical environments? Geoderma, 290, 19.CrossRefGoogle Scholar
Liivamägi, S., Šrodoń, J., Bojanowski, M.J., Gerdes, A., Stanek, J.J., Williams, L., & Szczerba, M. (2018). Paleosols on the Ediacaran basalts of the East European Craton: a unique record of paleoweathering with minimum diagenetic overprint. Precambrian Research, 316, 6682.CrossRefGoogle Scholar
Lima, A.P.B., Inda, A.V., Zinn, Y.L., & do Nascimento, P.C. (2021). Weathering sequence of soils along a basalt-sandstone toposequence in the Brazilian Cerrado. Geoderma, 394, 115009.CrossRefGoogle Scholar
Liu, C.C., Deng, C.L., & Liu, Q.S. (2012). Mineral magnetic studies of the vermiculated red soils in southeast China and their paleoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 329–330, 173183.CrossRefGoogle Scholar
Liu, X., Lv, B., Zheng, X.F., Chen, Z.X., & Du, J.H. (2022). Magnetic characteristics of yellow-red soil and transformation of its magnetic minerals in Zhouning, Fujian Province. Acta Pedologica Sinica, 59, 987998 [Chinese text with English abstract].Google Scholar
Long, X.Y., Ji, J.F., Balsam, Barrón, V., & Torrent, J. (2015). Grain growth and transformation of magnetic particles in red Ferralsols. Geophysical Research Letters, 42, 57625770.CrossRefGoogle Scholar
Lu, S.G., Xue, Q.F., Zhu, L., & Yu, J.Y. (2008). Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China. Catena, 73, 2333.CrossRefGoogle Scholar
Lyu, H., Watanabe, T., Ota, Y., Hartono, A., Anda, M., Dahlgren, R.A., & Funakawa, S. (2022). Climatic controls on soil clay mineral distributions in humid volcanic regions of Sumatra and Java, Indonesia. Geoderma, 425, 116058.CrossRefGoogle Scholar
Ma, J.L., Wei, G.J., Xu, Y.G., Long, W.G., & Sun, W.D. (2007). Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta, 71, 32233237.CrossRefGoogle Scholar
Marques, R., Waerenborgh, J.C., Prudêncio, M.I., Dias, M.I., Rocha, F., & da Silva, E.F. (2014). Iron speciation in volcanic topsoils from Fogo island (Cape Verde) – iron oxide nanoparticles and trace elements concentrations. Catena, 113, 95106.CrossRefGoogle Scholar
Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C. & Kappler, A. (2014). The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology, 12, 797808.CrossRefGoogle Scholar
Millet, M.A., Baker, J.A., & Payne, C.E. (2012). Ultra-precise stable Fe isotope measurements by high resolution multiple-collector inductively coupled plasma mass spectrometry with a 57Fe–58Fe double spike. Chemical Geology, 304–305, 1825.CrossRefGoogle Scholar
Nesbitt, H.W., & Young, G.M. (1982). Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715717.CrossRefGoogle Scholar
Opfergelt, S., Williams, H.M., Cornelis, J.T., Guicharnaud, R.A., Georg, R.B., Siebert, C., Gislason, S.R., Halliday, A.N., & Burton, K.W. (2017). Iron and silicon isotope behavior accompanying weathering in Icelandic soils, and the implications for iron export from peatlands. Geochimica et Cosmochimica Acta, 217, 273291.CrossRefGoogle Scholar
Orhan, D., & Hüseyin, S. (2018). Effect of toposequences on geochemical mass balance and clay mineral formation in soils developed on basalt parent material under subhumid climate condition. Indian Journal of Geo-Marine Sciences, 47, 18091820.Google Scholar
Ouyang, T.P., Tang, Z.H., Zhao, X., Tian, C.J., Ma, J.L., Wei, G.J., Huang, N.S., Li, M.K., & Bian, Y. (2015). Magnetic mineralogy of a weathered tropical basalt, Hainan Island, South China. Physics of the Earth and Planetary Interiors, 240, 105113.CrossRefGoogle Scholar
Perez-Fodich, A., & Derry, L.A. (2019). Organic acids and high soil CO2 drive intense chemical weathering of Hawaiian basalts: insights from reactive transport models. Geochimica et Cosmochimica Acta, 249, 173198.CrossRefGoogle Scholar
Phillips, J.D., Pawlik, Ł., & Šamonil, P. (2019). Weathering fronts. Earth-Science Reviews, 198, 102925.CrossRefGoogle Scholar
Pineau, M., Mathian, M., Baron, F., Rondeau, B., Le Deit, L., Allard, T., & Mangold, N. (2022). Estimating kaolinite crystallinity using near-infrared spectroscopy: implications for its geology on Earth and Mars. American Mineralogist, 107, 14531469.CrossRefGoogle Scholar
Pizarro, C., Escudey, M., Gacitua, M., & Fabris, J.D. (2017). Iron-bearing minerals from soils developing on volcanic materials from southern Chile. Mineralogical characterization supported by Mössbauer spectroscopy. Journal of Soil Science and Plant Nutrition, 17, 341365.Google Scholar
Poggere, G.C., Inda, A.V., Barrón, V., Kämpf, N., de Brito, A.D.B., Barbosa, J.Z., & Curi, N. (2018). Maghemite quantification and magnetic signature of Brazilian soils with contrasting parent materials. Applied Clay Science, 161, 385394.CrossRefGoogle Scholar
Pokrovsky, O.S., Schott, J., Kudryavtzev, D.I., & Dupre, B. (2005). Basalt weathering in Central Siberia under permafrost conditions. Geochimica et Cosmochimica Acta, 69, 56595680.CrossRefGoogle Scholar
Qafoku, N.P., Ranst, E.V., Noble, A., & Baert, G. (2004). Variable charge soils: their mineralogy, chemistry and management. Advances in Agronomy, 84, 159215.CrossRefGoogle Scholar
Qi, M., Gao, T., Wang, Z.R., Liu, Y.H., Xia, Y.F., Song, CS, Liu, Y.Z., & Liu, C.S. (2022). Iron solid-phase differentiation controls isotopic fractionation during lateritic weathering of basalt. Catena, 217, 106512.CrossRefGoogle Scholar
Rasmussen, C., Dahlgren, R.A., & Southard, R.J. (2010). Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA. Geoderma, 154, 473485.CrossRefGoogle Scholar
Santos, A.C., da Silva, R.C., da Silva Neto, E.C., dos Anjos, L.H.C., & Perera, M.G. (2021). Weathering and pedogenesis of mafic rock in the Brazilian Atlantic Forest. Journal of South American Earth Sciences, 111, 103452.CrossRefGoogle Scholar
Schuth, S., Hurraß, J., Münker, C., & Mansfeldt, T. (2015). Redox-dependent fractionation of iron isotopes in suspensions of a groundwater-influenced soil. Chemical Geology, 392, 7486.CrossRefGoogle Scholar
Sheldon, N.D., & Tabor, N.J. (2009). Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95, 152.CrossRefGoogle Scholar
Silva, A.C., Bispo, F.H.A., De Souza, S., Ardisson, J.D., Viana, A.J.S., Pereira, M.C., Costa, F.R., Murad, E., & Fabris, J.D. (2013). Iron mineralogy of a grey Oxisol from the Jequitinhonha River Basin, Minas Gerais, Brazil. Clay Minerals, 48, 713723.CrossRefGoogle Scholar
Stucki, J.W. (1988). Structural iron in smectites. In Stucki, J.W., Goodman, B.A., & Schwertmann, D. (eds), Iron in Soils and Clay Minerals (pp. 625675). Reidel Publishing Company, Dordrecht.CrossRefGoogle Scholar
Van Breemen, N., & Buurman, P. (2002). The formation of hydromorphic soils. In Van Breemen, N., & Buurman, P. (eds), Soil Formation (pp. 159192). Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Van Dam, R.L., Harrison, J.B.J., Hirschfeld, D.A., Meglich, T.M., Li, Y.G., & North, R.E. (2008). Mineralogy and magnetic properties of basaltic substrate soils: Kaho’olawe and Big Island, Hawaii. Soil Science Society of America Journal, 72, 244257.CrossRefGoogle Scholar
Vepraskas, M. J., & Faulkner, S. P. (2001) Redox chemistry of hydric soils. In Richardson, J. L. and Vepraskas, M. J. (eds.), Wetland Soils: Genesis, Hydrology, Landscapes, and Classification (pp. 85105). Lewis, New York.Google Scholar
Vilela, E.F., Inda, A.V., & Zinn, Y.L. (2019). Soil genesis, mineralogy and chemical composition in a steatite outcrop under tropical humid climate in Brazil. Catena, 183, 104234.CrossRefGoogle Scholar
Vingiani, S., Righi, D., Petit, S., & Terribile, F. (2004). Mixed-layer kaolinite-smectite minerals in a red-black soil sequence from basalt in Sardinia (Italy). Clays and Clay Minerals, 52, 473483.CrossRefGoogle Scholar
Waerenborgh, J.C., Rojas, D.P., Vyshatko, N.P., Shaula, A.L., Kharton, V.V., Marozau, I.P., & Naumovich, E.N. (2003). Fe4+ formation in brownmillerite CaAl0.5Fe0.5O2.5 + δ. Materials Letters, 57, 43884393.CrossRefGoogle Scholar
Wang, X.C., Li, Z.X., Li, X.H., Li, J., Liu, Y., Long, W.G., Zhou, J.B., & Wang, F. (2012). Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones? Journal of Petrology, 53, 177233.CrossRefGoogle Scholar
Watanabe, T., Ueda, S., Nakao, A., Ze, A.M., Dahlgren, R.A., & Funakawa, S. (2023). Disentangling the pedogenic factors controlling active Al and Fe concentrations in soils of the Cameroon volcanic line. Geoderma, 430, 116289.CrossRefGoogle Scholar
White, A.F., & Buss, H.L. (2014). Natural weathering rates of silicate minerals. In Drever, J.I. (ed.), Treatise on Geochemistry: Surface and Ground Water, Weathering and Soils (pp. 115155). Elsevier, Amsterdam.CrossRefGoogle Scholar
Wilson, S.G, Lambert, J.J., Nanzyo, M., & Dahlgren, R.A. (2017). Soil genesis and mineralogy across a volcanic lithosequence. Geoderma, 285, 301312.CrossRefGoogle Scholar
Wu, B., Amelung, W., Xing, Y., Bol, R., & Berns, A.E. (2019). Iron cycling and isotope fractionation in terrestrial ecosystems. Earth-Science Reviews, 190, 323352.CrossRefGoogle Scholar
Yang, Z.S., Gao, Z.M., Li, S.R., Luo, T.Y., Li, H.Y., & Rao, W.B. (2001). Characteristics of genetic mineralogy of red-clay type of gold deposit. Geoscience, 15, 216221 [Chinese text with English abstract].Google Scholar
Yu, G.H., Chi, Z.L., Teng, H.H., Dong, H.L., Kappler, A., Gillings, M.R., Polizzotto, M.L., Liu, C.Q., Zhu, Y.G. (2019). Fungus-initiated catalytic reactions at hyphal-mineral interfaces drive iron redox cycling and biomineralization. Geochimica et Cosmochimica Acta, 260, 192203.CrossRefGoogle Scholar
Yu, X.L., Wang, Y.F., Zhou, G.Z., Peng, G.Y., & Brookes, P.C. (2020). Paleoclimatic fingerprints of ferromanganese nodules in subtropical Chinese soils identified by synchrotron radiation-based microprobes. Chemical Geology, 531, 119357.CrossRefGoogle Scholar
Zhu, B.Q., & Wang, H.F. (1989). Nd-Sr-Pb isotopic and chemical evidence for the volcanism with MORB-OIB source characteristics in the Leiqiong area, China. Geochimica, 17, 193201[Chinese text with English abstract].Google Scholar
Ziegler, K., Hsieh, J.C.C., Chadwick, O.A., Kelly, E.F., Hendricks, D.M., & Savin, S.M. (2003). Halloysite as a kinetically controlled end product of arid-zone basalt weathering. Chemical Geology, 202, 461478.CrossRefGoogle Scholar