Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T07:33:46.482Z Has data issue: false hasContentIssue false

Chemical Variations in Chlorite at the Los Humeros Geothermal System, Mexico

Published online by Cambridge University Press:  28 February 2024

Raymundo G. Martínez-Serrano
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Mexico D.F., Mexico
Michel Dubois
Affiliation:
Université des Sciences et Techniques de Lille, Sédimentologie & Géodynamique, URA 719, Building SN5, 59655 Villeneuve d'Ascq CEDEX, France

Abstract

The chemical composition of hydrothermal chlorite was determined by means of more than 200 electron microprobe analyses (EMPA) in almost all of the 70 chlorite-bearing samples taken from 5 boreholes in a study of the active geothermal system of Los Humeros, Mexico. Bulk rock composition of 6 different volcanic lithologies, as well as available in situ temperatures and chemical compositions of chlorite, were analyzed by principal component analysis (PCA) in order to test the dependence of chlorite composition on physicochemical parameters. The results show that chlorite minerals display a wide range of chemical compositions in this hydrothermal system that reflect the particular conditions of crystallization episodes: The Na + K + 2Ca values are low (from 0 to 0.6) and they show no correlation patterns with octahedral vacancies (¤) in chlorite, indicating that compositional variations are not due to the intergrowth of smectite and/or illite. The octahedral occupancy of most chlorite is relatively high (from 11.3 to 11.95), especially that from a high-temperature range, as is the case of metamorphic chlorite. The octahedral occupancy seems not to be related to other chemical variables of chlorite from the G3, G4 and G5 lithologic units, suggesting that the lack of complete occupancy is not dependent on “contamination” by other silicates (such as quartz). Cationic substitution in tetrahedral sites in chlorite is small and via a Tschermak exchange (MgVISiIV ↔ AlVIAlIV). To preserve a charge balance in the structure, an octahedral substitution of R2+ by Al3+ accompanies the Tschermak exchange. The chemical composition of hydrothermal chlorite is very similar to that of metamorphic chlorite but slightly different from equivalent phases found in diagenetic environments. In hydrothermal chlorite the SiVI, AlVI and ¤ decrease, whereas the AlIV and Fe2+ contents increase with the degree of alteration and depth, the same way as in chlorite formed in diagenetic high-temperature environments. The ferrous iron content, in general, increases with depth and temperature; however, whole-rock chemistry affects the iron distribution in chlorite of Los Humeros. Changes in the oxygen fugacity of fluids at depth also affect the iron distribution in chlorite, XFe = Fe/(Fe + Mg), which ranges from 0.30 to 0.38 in oxidizing conditions and from 0.39 to 0.60 in reducing conditions. Finally, the chemical composition of chlorite in Los Humeros appears to change with temperature, but the correlations of ¤ and AlIV with temperature are more variable than in another nearby active geothermal system located in Los Azufres, Mexico. This implies that geothermometers based on chlorite composition and empirically calibrated in some geothermal systems cannot be generalized and it is necessary to consider other physicochemical variables.

Type
Research Article
Copyright
Copyright © 1998, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, H.J. and Peacor, D.R., 1985 Transmission electron microscopic study of chlorite in Gulf Coast argillaceous sediments Clays Clay Miner 33 228236 10.1346/CCMN.1985.0330309.CrossRefGoogle Scholar
Bailey, S.W. and Bailey, S.W., 1988 Chlorites: Structures and crystal chemistry Hydrous phyllosilicates (exclusive of micas). Rev Mineral 19 Washington, DC. Mineral Soc Am 347403 10.1515/9781501508998-015.CrossRefGoogle Scholar
Bailey, S.W. and Brown, B.E., 1962 Chlorite polytypism: I. Regular and semi-random one-layer structures Am Mineral 47 819850.Google Scholar
Barragán, R.M. Nieva, D. Santoyo, E. González-P, E. Verma, P.M. and López-M, J.M., 1991 Geoquímica de fluidos del campo geotèrmico de Los Humeros (Mexico) Geotermia, Revista Mexicana de Geoenergia 7 2347.Google Scholar
Bevins, R.E. and Merriman, R.J., 1988 Compositional controls on co-existing prehnite-actinolite and prehnite-pumpellyite facies assemblages in the Tal y Fan metabasite intrusion, North Wales: Implications for Caledonian metamorphic field gradients J Metamorphic Geol 6 1739 10.1111/j.1525-1314.1988.tb00406.x.CrossRefGoogle Scholar
Bevins, R.E. Robinson, D. and Rowbotham, G., 1991 Compositional variations in mafic phyllosilicates from regional metaba-sites and application of the chlorite geothermometer J Metamorphic Geol 9 711721 10.1111/j.1525-1314.1991.tb00560.x.CrossRefGoogle Scholar
Black, P.M., 1975 Mineralogy of New Caledonian metamorphic rocks. IV. Sheet silicates from the Ouegoa District Contrib Mineral Petrol 49 269284 10.1007/BF00376180.CrossRefGoogle Scholar
Bryndzia, T.L. and Scott, S.T., 1987 The composition of chlorite as a function of sulfur and oxygen fugacity: An experimental study Am J Sci 287 5076 10.2475/ajs.287.1.50.CrossRefGoogle Scholar
Campos-E, J.O. and Arredondo-F, J.J., 1992 Gravity study of Los Humeros caldera complex Mexico: Structure and associated geothermal system J Volcanol Geotherm Res 51 199215 10.1016/0377-0273(92)90123-U.Google Scholar
Cathelineau, M., 1988 Cation site occupancy in chlorites and illites as a function of temperature Clay Miner 23 471485 10.1180/claymin.1988.023.4.13.CrossRefGoogle Scholar
Cathelineau, M. and Nieva, D., 1985 A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system Contrib Mineral Petrol 91 235244 10.1007/BF00413350.CrossRefGoogle Scholar
Cho, M. and Fawcett, J.J., 1986 A kinetic study of clinochlore and its high temperature equivalent forsterite-cordierite-spinel at 2 kbar water pressure Am Mineral 71 6877.Google Scholar
Cho, M. and Liuo, J.G., 1987 Prehnite-pumpellyite to greenschist facies transition in the Kartmusen metabasites, Vancouver Island, B.C J Petrol 28 417443 10.1093/petrology/28.3.417.CrossRefGoogle Scholar
Curtis, C.D. Hughes, C.R. Whiteman, J.A. and Whittle, C.K., 1985 Compositional variation within some sedimentary chlorites and comments on their origin Mineral Mag 49 375386 10.1180/minmag.1985.049.352.08.CrossRefGoogle Scholar
de Caritat, P. Hutcheon, I. and Walshe, J.L., 1993 Chlorite geother-mometry: A review Clays Clay Miner 41 219239 10.1346/CCMN.1993.0410210.CrossRefGoogle Scholar
Deer, W.A. Howie, R.A. and Zussman, J., 1962 Rock-forming minerals: Sheet silicates London Longman.Google Scholar
Engelhardt, W.V., 1942 Die Strukturen von Thuringit, Bavalit und Chamosit und ihre Stellung in der Chloritegruppe .CrossRefGoogle Scholar
Esligner, E.V. and Savin, S.M., 1973 Oxygen isotope geother-mometry of the burial metamorphic rocks of the Precam-brian Belt Supergroup, Glacial National Park, Montana Geol Soc Am Bull 84 25492560 10.1130/0016-7606(1973)84<2549:OIGOTB>2.0.CO;2.Google Scholar
Essene, E.J. and Peacor, D.R., 1995 Clay mineral thermometry—A critical perspective Clays Clay Miner 43 540553 10.1346/CCMN.1995.0430504.CrossRefGoogle Scholar
Fawcett, J.J. and Yoder, H.S., 1966 Phase relations of the chlorites in the system MgO-Al2O3-SiO2-H2O Am Mineral 51 353380.Google Scholar
Ferriz, H., 1982 Geological and preliminary reservoir data on the Los Humeros geothermal system, Puebla, Mexico 8th Workshop on Geothermal Reservoir Engineering CA Stanford Univ 1924.Google Scholar
Ferriz, H. and Mahood, G.A., 1984 Eruption rates and compositional trends at Los Humeros Volcanic Center, Puebla, Mexico J Geophys Res 89 85118524 10.1029/JB089iB10p08511.CrossRefGoogle Scholar
Fleming, P.D. and Fawcett, J.J., 1976 Upper stability of chlorite + quartz in the system MgO-FeO-Al2O3-SiO2-H2O at 2kb water pressure Am Mineral 61 11751193.Google Scholar
Foster, M.D., 1962 Interpretation of the composition and classification for the chlorites 10.3133/pp414A.CrossRefGoogle Scholar
González-P, E. Barragán-R, R.M. Nieva-G, D. Quijano-L, J.L. López-M, J.M. and Gutiérrez-P, H., 1991 Estudio de inclusiones fiuidas en cuatro pozos del campo geotérmico de Los Humeros, Pue Geotermia, Revista Mexicana de Geoenergia 7 185199.Google Scholar
Hayes, J.B., 1970 Polytypism of chlorite in sedimentary rocks Clays Clay Miner 18 285306 10.1346/CCMN.1970.0180507.CrossRefGoogle Scholar
Hillier, S. and Velde, B., 1991 Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites Clay Miner 26 149168 10.1180/claymin.1991.026.2.01.CrossRefGoogle Scholar
Ishizuka, H., 1985 Prograde metamorphism of the Horokanai ophiolite in the Kamuikotan Zone, Hokkaido, Japan J Petrol 26 391417 10.1093/petrology/26.2.391.CrossRefGoogle Scholar
Jiang, W. Peacor, D.R. and Buseck, P.R., 1994 Chlorite geother-mometry?—Contamination and apparent octahedral vacancies Clays Clay Miner 42 593605 10.1346/CCMN.1994.0420512.CrossRefGoogle Scholar
Lee, J.H. Ahn, J.H. and Peacor, D.R., 1985 Textures in layered silicates progressive changes through diagenesis and low temperature metamorphism J Sed Petrol 55 532540.Google Scholar
Le Maitre, R.W., 1982 Numerical petrology; statistical interpretation of geochemical data Amsterdam Elsevier.Google Scholar
Liou, J.G., 1979 Zeolite facies metamorphism of basaltic rocks from the East Taiwan Ophiolite Am Mineral 19 114.Google Scholar
López-M, J. and Munguia-B, F., 1989 Evidencias del fenómeno de ebullición en el campo de Los Humeros, Pue., Mexico Geotermia, Revista Mexicana de Geoenergia 5 89106.Google Scholar
Loucks, R.R., 1992 The bound interlayer H2O content of po-tassic white micas: Muscovite-hydromuscovite-hydropyro-phyllite solutions Am Mineral 76 15631579.Google Scholar
Martínez-S, R.G., 1993 Caractérisation minéralogique, géochimique et isotopique du champ géothermique de Los Humeros, Mexique. Interactions fluide roche dans un système à fluide mixte (eau-vapeur) [Dr. Sciences thesis] Nancy, France INPL.Google Scholar
Martínez-S, R.G. and Alibert, C., 1994 Características geoquímicas de las rocas volcánicas del sistema geotérmico los Humeros, Puebla y su relación con la mineralogía de alteración Geofísica Internacional 33 585605.CrossRefGoogle Scholar
Martínez-S, R.G. Jacquier, B. and Arnold, M., 1996 The δ34S composition of sulfates and sulfides at the Los Humeros geo-thermal system, Mexico and their application to physico-chemical fluid evolution J Volcanol Geotherm Res 73 99118 10.1016/0377-0273(95)00083-6.CrossRefGoogle Scholar
Maxwell, D.T. and Hower, J., 1967 High grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt series Am Mineral 52 843857.Google Scholar
McDowell, S.D. and Elders, W.A., 1980 Authigenic layer silicate minerals in borehole Elmere 1, Salton Sea geothermal field, California, USA Contrib Mineral Petrol 74 293310 10.1007/BF00371699.CrossRefGoogle Scholar
McMurchy, R.C.. 1934. The crystal structure of chlorite minerals. Z Kinst 88. 420 p.Google Scholar
McOnie, A.W. Fawcett, J.J. and James, R.S., 1975 The stability of intermediate chlorites of the clinochlore-daphnite series at 2Kb PH2O Am Mineral 60 10471060.Google Scholar
Negendank, J.F.W. Emmerman, R. Krawczyk, R. Mooser, F. Tob-schall, H. and Werle, D., 1985 Geological and geochemical investigations on the eastern Transmexican Volcanic Belt Geoffsica Internacional 24 477575.CrossRefGoogle Scholar
Peacor, D.R. and Buseck, P.R., 1992 Diagenesis and low-grade metamorphism of shales and slates Minerals and reactions at the atomic scale: Transmission electron microscopy. Rev Mineral 27 Washington, DC Mineral Soc Am 335380 10.1515/9781501509735-013.CrossRefGoogle Scholar
Prol-L, R.M., 1990 Recent cooling in the Los Humeros geothermal field (Mexico), inferred from clays minerals distribution Geotherm Resour Council Trans 14 959964.Google Scholar
Ramboz, C. Pichavant, M. and Weisbrod, A., 1982 Fluid immisci-bility in natural processes: Use and misuse of fluid inclusion data. II. Interpretation of fluid inclusion data in terms of immiscibility Chem Geol 37 2948 10.1016/0009-2541(82)90065-1.CrossRefGoogle Scholar
Shau, Y.H. Essene, E.J. and Peacor, D.R., 1990 Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies Contrib Miner Petrol 105 123142 10.1007/BF00678980.CrossRefGoogle Scholar
Shirozu, H., Sudo, T. and Shimoda, S., 1978 Chlorite minerals Clays and Clay Minerals of Japan Amsterdam Elsevier 243264 10.1016/S0070-4571(08)70688-5.CrossRefGoogle Scholar
Tello-H, E., 1992 Características geoquímicas e isotópicas de los fluidos profundos de los pozos de Los Humeros, Puebla, Mexico Geotermia, Revista Mexicana de Geoenergia 8 348.Google Scholar
Torres-R, V. Martínez-S, R.G. and Silva-M, L., 1988 Interpretación de las características geoquímicas de la parte oriental de la Faja Volcánica Trans-mexicana Geotermia, Revista Mexicana de Geoenergia 4 139193.Google Scholar
Velde, B., 1984 Electron microprobe analysis of clay minerals Clay Miner 19 243247 10.1180/claymin.1984.019.2.11.CrossRefGoogle Scholar
Velde, B., 1992 Introduction to clay minerals New York Chapman and Hall 10.1007/978-94-011-2368-6.CrossRefGoogle Scholar
Velde, B., Price, G.D. and Ross, N.L., 1992 The stability of clays The stability of minerals London Chapman and Hall 329351.Google Scholar
Viggiano-G, J.C. and Robles, J., 1988 Mineralogía hidrotermal en el Campo Geotérmico de Los Humeros, Pue. I: Sus usos corno indicador de temperaturas y del régimen hidrológico Geotermia, Revista Mexicana de Geoenergia 4 1528.Google Scholar
Viniegra-O, F., 1965 Geología del Macizo de Teziutlan y la Cuenca Cenozoica de Veracruz Boletin Asocación Méxicana Geólogos Petroleros 17 100135.Google Scholar
Walker, J.R., 1989 Polytipism of chlorite in very low grade metamorphic rocks Am Mineral 74 738743.Google Scholar
Walshe, J.L., 1986 A six-component chlorite solid solution model and the conditions of chlorite formation in hydro-thermal and geothermal systems Econ Geol 81 681703 10.2113/gsecongeo.81.3.681.CrossRefGoogle Scholar
Warren, E. A. and Ransom, B., 1992 The influence of analytical error upon the interpretation of chemical variations in clay minerals Clay Miner 27 193209 10.1180/claymin.1992.027.2.05.CrossRefGoogle Scholar
Wiewióra, A. and Weiss, Z., 1990 Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition. II. The chlorite group Clay Miner 5 8392 10.1180/claymin.1990.025.1.09.CrossRefGoogle Scholar