Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T14:21:14.829Z Has data issue: false hasContentIssue false

Characterization of the Acidity of Al- and Zr-Pillared Clays

Published online by Cambridge University Press:  01 January 2024

Ana P. Carvalho*
Affiliation:
Departamento de Química, Bioquímica da Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Piso 6, Campo Grande, 1749-016 Lisbon, Portugal
Angela Martins
Affiliation:
Departamento de Engenharia Química do Instituto Superior de Engenharia de Lisboa, Av. Conselheiro Emídio Navarro, 1949-014 Lisbon, Portugal
João M. Silva
Affiliation:
Departamento de Engenharia Química do Instituto Superior de Engenharia de Lisboa, Av. Conselheiro Emídio Navarro, 1949-014 Lisbon, Portugal
João Pires
Affiliation:
Departamento de Química, Bioquímica da Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Piso 6, Campo Grande, 1749-016 Lisbon, Portugal
Helena Vasques
Affiliation:
Departamento de Engenharia Química do Instituto Superior de Engenharia de Lisboa, Av. Conselheiro Emídio Navarro, 1949-014 Lisbon, Portugal
M. Brotas de Carvalho
Affiliation:
Departamento de Química, Bioquímica da Faculdade de Ciências da Universidade de Lisboa, Ed. C8, Piso 6, Campo Grande, 1749-016 Lisbon, Portugal
*
*E-mail address of corresponding author: ana.carvalho@fc.ul.pt

Abstract

The surface acidic properties of pillared clays (PILCs) with Al or Zr oxide pillars (prepared from a natural Portuguese smectite and a synthetic Laponite), and of a protonic NaHY zeolite, were studied by two methods: pyridine adsorption followed by infrared (IR) spectroscopy, and the catalytic transformation of 1-butene. The results of the pyridine adsorption revealed that all the pillared clays studied have mainly Lewis-type acidity, the exception being the clay pillared with Zr oxide, obtained from natural smectite, which also presents a significant number of Brönsted acid sites. The results of 1-butene transformation showed that the pillared clays exhibit catalytic properties similar to those of the protonic Y zeolite. The acid character of the solids was confirmed by the values of the cis/trans 2-butene isomers ratio. At short reaction times, product distribution showed that the main reaction is oligomerization, followed by cracking. After 15 min the products are mainly the linear isomers, cis and trans-2-butene, showing that the majority of the catalytic active sites, are already poisoned after 15 min of reaction. The particular behaviour of Laponite intercalated with Al oxide pillars is discussed. The IR spectra of the pyridine adsorbed on the fresh samples and after the catalytic assays, revealed that Lewis acid sites behave as active sites for 1-butene catalytic transformation. The consistency between the results of the two complementary techniques used for the characterization of the acidity of the solids was proved.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araya, A. Blake, A.J. Blake, J. Harrison, I.D. Leach, H.F. Lowe, B.M. Whan, D.A. and Collins, S.P., (1992) Synthesis, properties, and catalytic behaviour of zeolite EU-12 Zeolites 12 2431 10.1016/0144-2449(92)90005-A.Google Scholar
Auer, H. and Hofmann, H., (1993) Pillared clays: characterization of acidity and catalytic properties and comparision with some zeolites Applied Catalysis. A: General 97 2338 10.1016/0926-860X(93)80064-W.Google Scholar
Bagshaw, S.A. and Cooney, R.P., (1993) FTIR surface site analysis of pillared clays using pyridine probe species Chemistry of Materials 5 11011109 10.1021/cm00032a013.Google Scholar
Ballivet, D. Barthomeuf, D. and Trambouze, Y., (1974) The isomerization of cis-2-butene over silica-alumina catalysts. III. Dependence on alumina content Journal of Catalysis 35 359362 10.1016/0021-9517(74)90217-6.Google Scholar
Basila, M.R., (1962) An infrared study of a silica-alumina surface The Journal of Physical Chemistry 66 22232228 10.1021/j100817a036.Google Scholar
Benito, I. del Riego, A. Martínez, M. Blanco, C. Pesquera, C. and González, F., (1999) Toluene methylation on Al13- and GaAl12-pillared clay catalysts Applied Catalysis A: General 180 175182 10.1016/S0926-860X(98)00328-7.Google Scholar
de Brotas Carvalho, M. Pires, J. and Carvalho, A.P., (1996) Characterization of clays and aluminium pillared clays by adsorption of probe molecules Microporous Materials 6 6577 10.1016/0927-6513(95)00089-5.Google Scholar
Cool, P. and Vansant, E.F., (1996) Preparation and characterization of zirconium pillared laponite and hectorite Microporous Materials 6 2736 10.1016/0927-6513(95)00080-1.Google Scholar
Costa, C. Lopes, J.M. Lemos, F. and Ramôa Ribeiro, F., (1999) Activity-acidity relationship in zeolite Y. Part 1. Transformation of light olefins Journal of Molecular Catalysis A: Chemical 144 207220 10.1016/S1381-1169(98)00365-3.Google Scholar
Datka, J., (1981) Transformations of butanes on dehydroxylated Y zeolites studied by infrared spectroscopy Journal of Chemical Society Faraday Transactions I 77 26332643 10.1039/f19817702633.Google Scholar
Datka, J., (1981) Adsorption of butanes on NaY and dehydroxylated Y zeolites by infrared spectroscopy Journal of Chemical Society Faraday Transactions I 77 13091314 10.1039/f19817701309.Google Scholar
Dunning, H.N., (1953) Review of olefin isomerization Industrial and Engineering Chemistry 45 551564 10.1021/ie50519a029.Google Scholar
Emeis, C.A., (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts Journal of Catalysis 141 347354 10.1006/jcat.1993.1145.Google Scholar
Farfan-Torres, E.M. Dodeycker, O. Grange, P., Poncelet, G. Jacobs, P.A. Grange, P. and Delmon, B., (1991) Zirconium pillared clays. Influence of basic polymerization of the precursor on their structure and stability Preparation of Catalysts V Amsterdam Elsevier Science Publishers 337 343.Google Scholar
Farfan-Torres, E.M. Sham, E. and Grange, P., (1992) Pillared clays: preparation and characterization of zirconium pillared montmorillonite Catalysis Today 15 515526 10.1016/0920-5861(92)85016-F.Google Scholar
Flego, C. Galasso, L. Millini, R. and Kiricsi, I., (1998) The influence of the composition on the thermal and acid characteristics of multi-component oxide pillared montmorillonite Applied Catalysis A: General 168 323331 10.1016/S0926-860X(97)00362-1.Google Scholar
Foster, N.F. and Cvetanovic, R.J., (1959) Stereoselective catalytic isomerization of n-butenes Journal of American Chemical Society 82 42744277 10.1021/ja01501a039.Google Scholar
Geatti, A. Lenarda, M. Storaro, L. Ganzerla, R. and Perissinotto, M., (1997) Solid acid catalysts from clays: cumene synthesis by benzene alkylation with propene catalyzed by cation exchanged aluminum pillared clays Journal of Molecular Catalysis A: Chemical 121 111118 10.1016/S1381-1169(96)00455-4.Google Scholar
Gil, A. Gandía, L.M. and Vicente, M.A., (2000) Recent advances in the synthesis and catalytic applications of pillared clays Catalysis Reviews — Science and Engineering 42 145212 10.1081/CR-100100261.Google Scholar
Gregg, S.J. and Sing, K.S.W., (1982) Adsorption, Surface Area and Porosity London Academic Press 209 228.Google Scholar
Guisnet, M. Lamberton, J.L. Perot, G. and Mauriel, R., (1977) Catalytic isomerization of ethylenic hydrocarbons. XIV. Effect of drying and reaction temperature on the isomerization of deuterated butenes over alumina Journal of Catalysis 48 166176 10.1016/0021-9517(77)90088-4.Google Scholar
Guiu, G. and Grange, P., (1997) Tantalum pillared montmorillonite. II. Acidic and catalytic properties Journal of Catalysis 168 463470 10.1006/jcat.1997.1638.Google Scholar
Hooff, J.H.C. Roelofsen, J.W., van Bekkum, H. Flaningen, E.M. and Jansen, J.C., (1991) Techniques of zeolite characterization Introduction to Zeolite Science and Practice Amsterdam Elsevier Science Publishers 241283 10.1016/S0167-2991(08)63605-8.Google Scholar
Jacobs, P.A. Declerck, L.J. Vandamme, L.J. and Uytterhoven, P., (1975) Active sites in zeolites. Part 4. n-butene isomerization over deammoniated and partly hydrolysed NH4Y Journal of the Chemical Society, Faraday Transactions 71 15451552 10.1039/f19757101545.Google Scholar
Kissin, Y.V., (1996) Chemical mechanism of hydrocarbon cracking over solid acidic catalysts Journal of Catalysis 163 5062 10.1006/jcat.1996.0304.Google Scholar
Ladavos, A.K. Trikalitis, P.N. and Pomonis, P.J., (1996) Surface characteristics and catalytic activity of Al-pillared (AZA) and Fe-Al-pillared (FAZA) clays for isopropanol decomposition Journal of Molecular Catalysis 106 241254 10.1016/1381-1169(95)00281-2.Google Scholar
Lambert, J.F. and Poncelet, G., (1997) Acidity in pillared clays: origin and catalytic manifestations Topics in Catalysis 4 4356 10.1023/A:1019175803068.Google Scholar
Malla, P. and Komarneni, S., (1990) Synthesis of highly microporous hydrophilic alumina-pillared montmorillonite: Water-sorption properties Clays and Clay Minerals 38 363372 10.1346/CCMN.1990.0380405.Google Scholar
Medema, J., (1975) Isomerization of butene over alumina Journal of Catalysis 37 91100 10.1016/0021-9517(75)90136-0.Google Scholar
Molina, R. Schutz, A. and Poncelet, G., (1994) Transformation of m-xylene over Al-pillared clays and ultrastable zeolite Y Journal of Catalysis 145 7985 10.1006/jcat.1994.1010.Google Scholar
Occelli, M.L., (1986) New routes to the preparation of pillared montmorillonite catalysts Journal of Molecular Catalysis 35 377389 10.1016/0304-5102(86)87085-7.Google Scholar
Occelli, M.L. Landau, S.D. and Pinnavaia, T.J., (1984) Cracking selectivity of a delaminated clay catalyst Journal of Catalysis 90 256260 10.1016/0021-9517(84)90253-7.Google Scholar
Pereira, P.R. Pires, J. and de Brotas Carvalho, M., (1998) Zirconium pillared clays for carbon dioxide/methane separation. 1. Preparation of adsorbent materials and pure gas adsorption Langmuir 14 45844588 10.1021/la980209e.Google Scholar
Perot, G. Guisnet, M. and Mauriel, R., (1976) Catalytic isomerization of ethylenic hydrocarbons Journal of Catalysis 41 1421 10.1016/0021-9517(76)90195-0.Google Scholar
Pires, J. Carvalho, M.B. Ribeiro, F.R. and Derouane, E.G., (1991) Textural characteristics of Y and ZSM-20 zeolites determined by nitrogen adsorption Zeolites 11 345348 10.1016/0144-2449(91)80298-E.Google Scholar
Pires, J. Carvalho, M.B. and Carvalho, A.P., (1997) Aluminium-pillared clays: decomposition of the intercalating species and textural properties Zeolites 19 107113 10.1016/S0144-2449(97)00054-7.Google Scholar
Pires, J. Machado, M. and de Brotas Carvalho, M., (1998) Porosity and thermal stability of PILCs prepared with clays from different origins and different metal-polyhydroxycationic species of Al and Al/Ce Journal of Materials Chemistry 8 14651469 10.1039/a800891d.Google Scholar
Pires, J. Carvalho, A.P. Pereira, P.R. and de Brotas Carvalho, M., (1998) Acidity studies on pillared clays (PILCs) by pyridine adsorption and 1-butanol dehydration Reaction Kinetics and Catalysis Letters 65 915 10.1007/BF02475309.Google Scholar
Pires, J. de Brotas Carvalho, M. Carvalho, A.P. Guil, J.M. and Perdigón-Melón, J.A., (2000) Heats of adsorption of n-hexane by thermal gravimetry with differential scanning calorimetry (TG-DSC): a tool for textural characterization of pillared clays Clays and Clay Minerals 48 385391 10.1346/CCMN.2000.0480309.Google Scholar
Pires, J., Carvalho, A.P., Clara, E. and Brotas de Carvalho, M. (2000b) Adsorção de Compostos Orgânicos Voláteis (VOCs). XVII Ibero American Symposium on Catalysis, Porto, p. 651.Google Scholar
Pires, J. Carvalho, A. and Carvalho, M.B., (2001) Adsorption of volatile organic compounds in Y zeolites and pillared clays Microporous and Mesoporous Materials 43 277287 10.1016/S1387-1811(01)00207-4.Google Scholar
Raimond, M. De Stefanis, A. Perez, G. and Tomlinson, A.A.G., (1998) PLS vs. Zeolites as sorbents and catalysts. 5. Evidence for Brønsted/Lewis acid crossover and high acidity in conversions of C1–3 alcohols in some alumina-pillared smectite clays Applied Catalysis A: General 171 8597 10.1016/S0926-860X(98)00052-0.Google Scholar
Tsuchiya, S. Kawasaki, S. Mikami, M. and Imamura, H., (1987) Reaction profile of isomerization of n-butenes over zeolite catalysts Zeolites 7 46 10.1016/0144-2449(87)90108-4.Google Scholar
Vaughan, D.E.W. and Burch, R., (1988) Pillared clays, a historical perspective Pillared Clays: Catalysis Today Amsterdam Elsevier 187 198.Google Scholar
Weaver, C.E. and Pollard, L.D., (1975) The Chemistry of Clay Minerals Amsterdam Elsevier 55 86.Google Scholar
Weeks, T.J. Jr. Angell, C.L. Ladd, I.R. and Bolton, A.P., (1974) The polymerisation and aromatic alkylation of butene-1 with calcined ammonium type Y zeolite Journal of Catalysis 33 256264 10.1016/0021-9517(74)90269-3.Google Scholar
Xu, X.Q. Yin, Y.G. Suib, S.L. and Young, C.L., (1994) Selective conversion of n-butene to isobutylene at extremely high space velocities on ZSM-23 zeolites Journal of Catalysis 150 3445 10.1006/jcat.1994.1320.Google Scholar