Hostname: page-component-76dd75c94c-sgvz2 Total loading time: 0 Render date: 2024-04-30T09:15:46.162Z Has data issue: false hasContentIssue false

Characterization and Assessment of Natural Amazonian Clays for Cosmetics-Industry Applications

Published online by Cambridge University Press:  01 January 2024

Antonio Claudio Kieling
Affiliation:
Department of Mechanical Engineering, Amazonas State University – UEA, Manaus, Brazil Department of Education, Federal Institute of Amazonas – IFAM, Manaus, Brazil
Cláudia Cândida Silva
Affiliation:
Department of Education, Federal Institute of Amazonas – IFAM, Manaus, Brazil Department of Chemical Engineering, Amazonas State University – UEA, Manaus, Brazil
Sérgio Duvoisin Júnior
Affiliation:
Department of Education, Federal Institute of Amazonas – IFAM, Manaus, Brazil Department of Chemical Engineering, Amazonas State University – UEA, Manaus, Brazil
José Costa de Macedo Neto
Affiliation:
Department of Education, Federal Institute of Amazonas – IFAM, Manaus, Brazil Department of Materials Engineering, Amazonas State University – UEA, Manaus, Brazil
Miécio de Oliveira Melquíades
Affiliation:
Department of Education, Federal Institute of Amazonas – IFAM, Manaus, Brazil Department of Mechanical Engineering, Federal University of São João del Rei – UFSJ, São João del Rei, Brazil
Gilberto Garcia del Pino
Affiliation:
Department of Mechanical Engineering, Amazonas State University – UEA, Manaus, Brazil Department of Education, Federal Institute of Amazonas – IFAM, Manaus, Brazil
Yago Ono de Souza Moreira
Affiliation:
Department of Education, Federal Institute of Amazonas – IFAM, Manaus, Brazil Department of Chemical Engineering, Amazonas State University – UEA, Manaus, Brazil
Túlio Hallak Panzera*
Affiliation:
Department of Education, Federal Institute of Amazonas – IFAM, Manaus, Brazil Department of Mechanical Engineering, Federal University of São João del Rei – UFSJ, São João del Rei, Brazil
Maria das Graças da Silva Valenzuela
Affiliation:
Department of Education, Federal Institute of Amazonas – IFAM, Manaus, Brazil Department of Metallurgical and Materials Engineering, University of São Paulo – USP, São Paulo, Brazil
Francisco Rolando Valenzuela Diáz
Affiliation:
Department of Education, Federal Institute of Amazonas – IFAM, Manaus, Brazil Department of Metallurgical and Materials Engineering, University of São Paulo – USP, São Paulo, Brazil

Abstract

Clays are abundant materials in the Amazon region and have been used historically by ancient Amazonian people to produce ceramic and cosmetics products. The current study aimed to evaluate the potential of four clays from the metropolitan area of Manaus, each with a different color, for cosmetics applications. Two clays were collected in the Ponta Negra region (red and gray in color) in Manaus, one in Careiro (white), and one in Itacoatiara (black). After drying in an oven for 24 h at 105°C, the four clays were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), infrared (IR) spectroscopy, thermogravimetry (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), particle-size analysis, and detection of microorganisms. The amounts of Al, Si, Cl, K, Ca, Ti, Cr, Fe, Zn, P, and S in all samples were below the limits for use in cosmetics. The main phases identified were kaolinite 1A, quartz, gibbsite, and the rare kaolinite 2M. Approximately 40 wt.% of each sample was in the < 20 μm particle-size range. Analyses by SEM revealed pseudo-hexagonal kaolinite structures with nano-islands and nanocrystallites. The low toxicity, mineralogic compositions, and particle-size findings suggest that Amazonian clays are promising for cosmetics applications.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: F. Javier Huertas

References

ASTM C1365 (2006). Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-Ray Powder Diffraction Analysis. ASTM International. West Conshohocken, PA, USA.Google Scholar
ASTM C114 (2013). Standard Test Methods for Chemical Analysis of Hydraulic Cement. ASTM International, West Conshohocken, PA, USA.Google Scholar
ASTM D2216 (2019). Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International, West Conshohocken, PA, USA.Google Scholar
ASTM D4464 (2015). Standard Test Method for Particle Size Distribution of Catalytic Materials by Laser Light Scattering. ASTM International, West Conshohocken, PA, USA.Google Scholar
ASTM D6913/D6913M (2017). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, West Conshohocken, PA, USA.Google Scholar
ASTM E1131 (2020). Standard Test Method for Compositional Analysis by Thermogravimetry. ASTM International, West Conshohocken, PA, USA.Google Scholar
ASTM E1252–98 (2021). Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. ASTM International, West Conshohocken, PA, USA.Google Scholar
ASTM E1621 (2013). Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry. ASTM International, West Conshohocken, PA, USA.Google Scholar
ASTM E986 (2004). Standard Practice For Scanning Electron Microscope Beam Size Characterization. ASTM International, West Conshohocken, PA, USA.Google Scholar
Awad, M. E., López-Galindo, A., Setti, M., El-Rahmany, M. M., & Iborra, C. V. (2017). Kaolinite in pharmaceutics and bio-medicine. International Journal of Pharmaceutics, 533(1), 3448. https://doi.org/10.1016/j.ijpharm.2017.09.056CrossRefGoogle Scholar
Beringhs, A. O., Rosa, J. M., Stulzer, H. K., Budal, R. M., & Sonaglio, D. (2013). Green clay and Aloe Vera peel-off facial masks: Response surface methodology applied to the formulation design. An Official Journal of the American Association of Pharmaceutical Scientists, 14, 445455. https://doi.org/10.1208/s12249-013-9930-8Google Scholar
Bouna, L., Ait El Fakir, A., Benlhachemi, A., Draoui, K., Ezahri, M., Bakiz, B., Villain, S., Guinneton, F., & Elalem, N. (2020). Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay. Applied Clay Science, 196, 120. https://doi.org/10.1016/j.clay.2020.105764CrossRefGoogle Scholar
BRAZIL (1999). Brazilian resolution 481/99: Microbiological control parameters for personal care products and cosmetics. National Health Surveillance Agency ANVISA. Accessed 05/03/2022 https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/1999/res0481_23_09_1999_rep.htmlGoogle Scholar
British Pharmacopeia (2008) Accessed10/12/2021 https://www.pharmacopoeia.com/Google Scholar
Carretero, M. I., & Pozo, M. (2010). Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II Active Ingredients. Applied Clay Science, 47(3–4), 171181. https://doi.org/10.1016/j.clay.2009.10.016CrossRefGoogle Scholar
Chauvel, A., Lucas, Y., & Boulet, R. (1987). On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia, 43, 234241. https://doi.org/10.1007/BF01945546CrossRefGoogle Scholar
Cornu, S., Lucas, Y., Lebon, E., Ambrosi, J., Luizão, F., Rouiller, J., Bonnay, M., & Neal, C. (1999). Evidence of titanium mobility in soil profles Manaus, Central Amazonia. Geoderma, 91(3–4), 281295. https://doi.org/10.1016/S0016-7061(99)00007-5CrossRefGoogle Scholar
Cosmetic Europe (2019). Cosmetic Europe-the personal care association. Cosmetics and personal care industry overview. Accessed 15/03/2022 https://cosmeticseurope.eu/cosmetics-industry/Google Scholar
Couceiro, P. R. C., & Santana, G. P. (1999). Caulinita em solo da Amazônia: Caracterização e permutabilidade. Acta Amazônica, 29(2), 265275. https://doi.org/10.1590/1809-43921999292275CrossRefGoogle Scholar
Das, S., Sen, B., & Debnath, N. (2015). Recent trends in nanomaterials applications in environmental monitoring and remediation. Environmental Science and Pollution Research, 22, 1833318344. https://doi.org/10.1007/s11356-015-5491-6CrossRefGoogle ScholarPubMed
Favero, J. S., dos Santos, V., Weiss-Angeli, V., Gomes, L. B., Veras, D. G., Dani, N., Mexias, A. S., & Bergmann, C. P. (2019). Evaluation and characterization of Melo Bentonite clay for cosmetic applications. Applied Clay Science, 175, 4046. https://doi.org/10.1016/j.clay.2019.04.004CrossRefGoogle Scholar
Ferreira, A. S., Rovani, P. R., de Lima, J. C., & Pereira, A. S. (2015). High-pressure study of Ti50Ni25Fe25 powder produced by mechanical alloying. Journal of Applied Physics, 117, 075901. https://doi.org/10.1063/1.4907386CrossRefGoogle Scholar
Horbe, A. M. C., Horbe, M. A., & Suguio, K. (2004). Tropical Spodosols in northeastern Amazonas State, Brazil. Geoderma, 119, 5568. https://doi.org/10.1016/S0016-7061(03)00233-7CrossRefGoogle Scholar
Ihekweme, G. O., Shondo, J. N., Orisekeh, K. I., Kalu-Uka, G. M., Nwuzor, I. C., & Onwualu, A. P. (2020). Characterization of certain Nigerian clay minerals for water purification and other industrial applications. Heliyon, 6, e03783. https://doi.org/10.1016/j.heliyon.2020.e03783CrossRefGoogle ScholarPubMed
Kim, M. H., Choi, G., Elzatahry, A., Vinu, A., Choy, Y. B., & Choy, J.-H. (2016). Review of Clay-Drug Hybrid Materials for Biomedical Applications: Administration Routes. Clays and Clay Minerals, 64, 115130. https://doi.org/10.1346/CCMN.2016.0640204CrossRefGoogle ScholarPubMed
Larson, A. C., & Von Dreele, R. B. G. (2004). General structure analysis system. Kaos GL Dergisi, 748, 121.Google Scholar
Lebedeva, E. V., & Fogden, A. (2011). Wettability alteration of kaolinite exposed to crude oil in salt solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377, 115122. https://doi.org/10.1016/j.colsurfa.2010.12.051CrossRefGoogle Scholar
Long, M., Zhang, Y., Huang, P., Chang, S., Hu, Y., Yang, Q., Mao, L., & Yang, H. (2018). Emerging Nanoclay Composite for Effective Hemostasis. Advanced Functional Materials, 28(10), 1704452. https://doi.org/10.1002/adfm.201704452CrossRefGoogle Scholar
López-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 5163. https://doi.org/10.1016/j.clay.2006.06.016CrossRefGoogle Scholar
Ma, G., & Allen, H. C. (2004). Handbook of Spectroscopy, Volumes 1 and 2 Edited by Günter Gauglitz (University of Tübingen) and Tuan Vo-Dinh (Oak Ridge National Laboratory). Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim. Germany. 1168 pp. Journal of the American Chemical Society, 8859–8860 pp. https://doi.org/10.1021/ja033666cGoogle Scholar
Macedo, R. S., Menezes, R. R., Neves, G. A., & Ferreira, H. C. (2008). Estudo de argilas usadas em cerâmica vermelha (Study of clays used in red ceramic). Cerâmica, 54, 411417. https://doi.org/10.1590/S0366-69132008000400005CrossRefGoogle Scholar
Massaro, M., Colletti, C., Lazzara, G., & Riela, S. (2018). The use of some clay.minerals as natural resources for drug carrier applications. Journal of Functional Biomaterials, 9, 122. https://doi.org/10.3390/jfb9040058CrossRefGoogle ScholarPubMed
Mattioli, M., Giardini, L., Roselli, C., & Desideri, D. (2016). Mineralogical characterization of commercial clays used in cosmetic and possible risk for health. Applied Clay Science, 119(2), 449454. https://doi.org/10.1016/j.clay.2015.10.023CrossRefGoogle Scholar
Melquíades, M. O., de Oliveira, L. S., Rebelo, Q. H. F., Chaudhuri, P., Leite, E. R., Trichês, D. M., & Michielon de Souza, S. (2019). Structural and optical properties of a mechanically alloyed thermoelectric lamellar SnSeS solid solution. Journal of Applied Physics, 126, 135707. https://doi.org/10.1063/1.5120033CrossRefGoogle Scholar
Michielon de Souza, S., Ordozgoith da Frota, H., Trichês, D. M., Ghosh, A., Chaudhuri, P., dos Santos, S., Gusmao, M., de Figueiredo Pereira, A. F. F., Couto Siqueira, M., Daum Machado, K., & Cardoso de Lima, J. (2016). Pressure-induced polymorphism in nanostructured SnSe. Journal of Applied Crystallography, 49, 213221. https://doi.org/10.1107/S1600576715023663CrossRefGoogle Scholar
Morekhure-Mphahlele, R., Focke, W. W., & Grote, W. (2017). Characterization of vumba and ubumba clays used for cosmetic purposes. South African Journal of Science, 113, 26. https://doi.org/10.17159/sajs.2017/20160105CrossRefGoogle Scholar
Muniz, F. T. L., Miranda, M. A. R., Morilla dos Santos, C., & Sasaki, J. M. (2016). The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section a: Foundations and Advances, 72, 385390. https://doi.org/10.1107/S205327331600365XGoogle ScholarPubMed
Neto, J. C. M., Kimura, S. P. R., Adeodato, M. G., Neto, J. E., Nascimento, N. R., & Lona, L. M. F. (2017). Intercalation and exfoliation mechanism of kaolinite during the emulsion polymerization. Chemical Engineering Transactions, 57, 14531458. https://doi.org/10.3303/CET1757243Google Scholar
Otieno, S. O., Kengara, F. O., Kemmegne-Mbouguen, J. C., Langmi, H. W., Kowenje, C. B., & Mokaya, R. (2019). The effects of metakaolinization and fused-metakaolinization on zeolites synthesized from quartz-rich natural clays. Microporous and Mesoporous Materials, 290, 109668. https://doi.org/10.1016/j.micromeso.2019.109668CrossRefGoogle Scholar
Paiva-Santos, C. O. (2001) Aplicações do método de rietveld e potencialidades do método de scarlett-madse. 1–42. Accessed 13/03/2021 http://noxconsultoria.com.br/labcacc/aulas/textos/Aplicacoes_do_metodo_de_Rietveld.pdfGoogle Scholar
Reis, N. J., Almeida, M. E., Riker, S. L., & Ferreira, A. L. (2006). Geologia e recursos minerais do estado do Amazonas. Rio de janeiro: CPRM; CIAMA, 2006. Accessed 02/03/2022 https://rigeo.cprm.gov.br/handle/doc/2967Google Scholar
Silva, M. S., Lages, A. S., & Santana, G. P. (2017). Physical and chemical study of lattice kaolinites and their interaction with orthophosphate. Anais Da Academia Brasileira De Ciências, 89(3), 13911401. https://doi.org/10.1590/0001-3765201720160519CrossRefGoogle ScholarPubMed
Soares de Oliveira, L., de Oliveira Melquiades, M., da Costa Pinto, C., Trichês, D. M., & Michielon de Souza, S. (2020). Phase transformations in a NiTiGe system induced by high energy milling. Journal of Solid State Chemistry, 281, 18. https://doi.org/10.1016/j.jssc.2019.121056CrossRefGoogle Scholar
Souza, W. B., & Santana, G. P. (2014). Mineralogy, zinc kinetic adsorption and sequential extraction of contaminated soil in Manaus Amazon. Ciencia Rural, 44(5), 788793. https://doi.org/10.1590/S0103-84782014000500005CrossRefGoogle Scholar
Stokes, A. R., & Wilson, A. J. C. (1944). The diffraction of X-rays by distorted crystal aggregates – I. Proceedings of the Physical Society, 56, 174181. https://doi.org/10.1088/0959-5309/56/3/303CrossRefGoogle Scholar
Thiesen, L., Bretzke, P. E., Bittencourt, C. M., Silva, R. M. L., Bresolin, T. M. B., Santin, J. R., & Couto, A. G. (2020). Litchi chinensis leaf extract provides high in vitro photoprotection associated to a natural mineral clay. Photodermatology, Photoimmunology and Photomedicine, 36, 6162. https://doi.org/10.1111/phpp.12488CrossRefGoogle ScholarPubMed
Toby, B. H. (2006). R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 21, 6770. https://doi.org/10.1154/1.2179804CrossRefGoogle Scholar
Vieira Coelho, A. C., Santos, P. D. S., & Santos, H. D. S. (2007). Argilas especiais: O que são, caracterização e propriedades. Quimica Nova, 30, 146152. https://doi.org/10.1590/S0100-40422007000100026CrossRefGoogle Scholar
Viseras, C., Carazo, E., Borrego-Sánchez, A., García-Villén, F., Sánchez-Espejo, R., Cerezo, P., & Aguzzi, C. (2019). Clay Minerals in Skin Drug Delivery. Clays Clay Minerals, 67, 5971. https://doi.org/10.1007/s42860-018-0003-7CrossRefGoogle Scholar
Yadav, T., Mukhopadhyay, N., Tiwari, R., & Srivastava, O. (2005). Studies on the formation and stability of nanocrystalline Al50Cu28Fe22 alloy synthesized through high-energy ball milling. Materials Science and Engineering A, 393, 366373. https://doi.org/10.1016/j.msea.2004.11.002CrossRefGoogle Scholar
Zhao, X., Cai, B., Tang, Q., Tong, Y., & Liu, Y. (2014). One-dimensional nanostructure field-effect sensors for gas detection. Sensors (switzerland), 14, 1399914020. https://doi.org/10.3390/s140813999CrossRefGoogle ScholarPubMed