Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-18T21:22:12.370Z Has data issue: false hasContentIssue false

Application of Electron Energy-Loss Spectroscopy (EELS) and Energy-Filtered Transmission Electron Microscopy (EFTEM) to the Study of Mineral Transformation Associated with Microbial Fe-Reduction of Magnetite

Published online by Cambridge University Press:  01 January 2024

Jinwook Kim*
Affiliation:
Department of Earth System Sciences, Yonsei University, Seoul, Korea
Hailiang Dong*
Affiliation:
Geomicrobiology Laboratory, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China Department of Geology, Miami University, Oxford, OH 45056, USA
*
* E-mail address: Jinwook@yonsei.ac.kr
E-mail address: dongh@muohio.edu

Abstract

Electron energy-loss spectroscopy (EELS), energy-filtered transmission electron microscopy (EFTEM), and high-resolution transmission electron microscopy (HRTEM) have been applied in mineralogy and materials research to determine the oxidation states of various metals at high spatial resolution. Such information is critical in understanding the kinetics and mechanisms of mineral–microbe interactions. To date, the aforementioned techniques have not been applied widely in the study of such interactions. In the present study, the three techniques above were employed to investigate mineral transformations associated with microbial Fe(III) reduction in magnetite. Shewanella putrefaciens strain CN32, a dissimilatory metal-reducing bacterium, was incubated with magnetite as the sole electron acceptor and lactate as the electron donor for 14 days under anoxic conditions in bicarbonate buffer. The extent of bioreduction was determined by wet chemistry and mineral solids were investigated by HRTEM, EFTEM, and EELS. Magnetite was partially reduced and biogenic siderite formed. The elemental maps of Fe, O, and C and red-green-blue (RGB) composite map for residual magnetite and newly formed siderite were contrasted by the EFTEM technique. The HRTEM revealed nm-sized magnetite crystals coating bacterial cells. The Fe oxidation state in residual magnetite and biogenic siderite was determined using the EELS technique (the integral ratio of L3 to L2). The integral ratio of L3 to L2 for magnetite (6.29) and siderite (2.71) corresponded to 71% of Fe(III) in magnetite, and 24% of Fe(III) in siderite, respectively. A chemical shift (~1.9 eV) in the Fe-L3 edge of magnetite and siderite indicated a difference in the oxidation state of Fe between these two minerals. Furthermore, the EELS images of magnetite (709 eV) and siderite (707 eV) were extracted from the electron energy-loss spectra collected, ranging from 675 to 755 eV, displaying different oxidation states of Fe in the magnetite and siderite phases. The results demonstrate that EELS is a powerful technique for studying the Fe oxidation-state change as a result of microbial interaction with Fe-containing minerals.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anastacio, A.S. Harris, B. Yoo, H.-I. Fabris, J.D. and Stucki, J.W., 2008 Limitations of the ferrozine method for quantitative assay of mineral systems for ferrous and total iron Geochimica et Cosmochimica Acta 72 50015008 10.1016/j.gca.2008.07.009.CrossRefGoogle Scholar
Bazylinski, D.A. and Frankel, R.B., 2003 Biologically controlled mineralization in prokaryotes Reviews in Mineralogy and Geochemistry 54 217247 10.2113/0540217.CrossRefGoogle Scholar
Benzerara, K. and Menguy, N., 2009 Looking for traces of life in minerals Comptes Rendus Palevol 8 617628 10.1016/j.crpv.2009.03.006.CrossRefGoogle Scholar
Buatier, M.D. Guillaume, D. Wheat, C.G. Hervé, L. and Adatte, T., 2004 Mineralogical characterization and genesis of hydrothermal Mn oxides from the flank of the Juan the Fuca Ridge American Mineralogist 89 18071815 10.2138/am-2004-11-1227.CrossRefGoogle Scholar
Childers, S.E. Ciufo, S. and Lovley, D.R., 2002 Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis Nature 416 767769 10.1038/416767a.CrossRefGoogle ScholarPubMed
Daulton, T.L. Little, B.J. Lowe, K. and Jones-Meehan, J., 2002 Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction Journal of Microbiological Methods 50 3954 10.1016/S0167-7012(02)00013-1.CrossRefGoogle Scholar
Daulton, T.L. Little, B.J. Jones-Meehan, J. Blom, D.A. and Allard, L.F., 2007 Microbial reduction of chromium from the hexavalent to divalent state Geochimica et Cosmochimica Acta 71 556565 10.1016/j.gca.2006.10.007.CrossRefGoogle Scholar
Dong, H. Fredrickson, J.K. Kennedy, D.W. Zachara, J.M. Kukkadapu, R.K. and Onstott, T.C., 2000 Mineral transformation associated with the microbial reduction of magnetite Chemical Geology 169 299318 10.1016/S0009-2541(00)00210-2.CrossRefGoogle Scholar
Dong, H. Jaisi, D.P. Kim, J.W. and Zhang, G., 2009 Microbe–clay mineral interactions: A Review American Mineralogist 94 15051519 10.2138/am.2009.3246.CrossRefGoogle Scholar
Dyar, M.D. Solberg, T.C. and Burns, R.G., 1986 The effects of composition, oxygen fugacity, and crystal structure on the color of hibonite Lunar and Planetary Science 17 194195.Google Scholar
Eberl, D.D. Nüesch, R. Sucha, V. and Tsipursky, S., 1998 Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation Clays and Clay Minerals 46 8997 10.1346/CCMN.1998.0460110.CrossRefGoogle Scholar
Elliott, J.C., 2002 Calcium phosphate biominerals Phosphates: Geochemical, Geobiological, and Materials Importance 48 427453 10.1515/9781501509636-014.CrossRefGoogle Scholar
Fredrickson, J.K. Zachara, J.M. Kennedy, D.W. Dong, H. Onstott, T.C. Hinman, N.W. and Li, S.M., 1998 Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium Geochimica et Cosmochimica Acta 62 32393257 10.1016/S0016-7037(98)00243-9.CrossRefGoogle Scholar
Garvie, L.A.J. Craven, A.J. and Brydson, R., 1994 Use of electron-loss near-edge fine structure in the study of minerals American Mineralogist 79 411425.Google Scholar
Garvie, L.A.J. Zega, T.J. Rez, P. and Buseck, P.R., 2004 Nanometer-scale measurements of Fe3+/ΣFe by electron energy-loss spectroscopy: a cautionary note American Mineralogist 89 16101616 10.2138/am-2004-11-1204.CrossRefGoogle Scholar
Golla, U. and Putnis, A., 2001 Valence state mapping and quantitative electron spectroscopic imaging of exsolution in titanohematite by energy-filtered TEM Physics and Chemistry of Minerals 28 119129 10.1007/s002690000136.CrossRefGoogle Scholar
Hunt, J.A. and Williams, D.B., 1991 Electron energy-loss spectrum imaging Ultramicroscopy 38 4773 10.1016/0304-3991(91)90108-I.CrossRefGoogle Scholar
Jaisi, D.P. Dong, H. and Liu, C., 2007 Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite Geochimica et Cosmochimica Acta 71 11451158 10.1016/j.gca.2006.11.027.CrossRefGoogle Scholar
Kim, J.W. Peacor, D.R. Tessier, D. and Elsass, F., 1995 A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations Clays and Clay Minerals 43 5157 10.1346/CCMN.1995.0430106.CrossRefGoogle Scholar
Kim, J.W. Furukawa, Y. Daulton, T.L. Lavoie, D. and Newell, S.W., 2003 Characterization of microbially Fe (III)-reduced nontronite: environmental cell-transmission electron microscopy study Clays and Clay Minerals 51 382389 10.1346/CCMN.2003.0510403.CrossRefGoogle Scholar
Kim, J.W. Dong, H. Seabaugh, J. Newell, S.W. and Eberl, D.D., 2004 Role of microbes in the smectite-to-illite reaction Science 303 830832 10.1126/science.1093245.CrossRefGoogle ScholarPubMed
Konhouser, K.O., 1998 Diversity of bacterial iron mineralization Earth-Science Reviews 43 91121 10.1016/S0012-8252(97)00036-6.CrossRefGoogle Scholar
Konhauser, K.O. and Ferris, F.G., 1996 Diversity of iron and silica precipitation by microbial biofilms in hydrothermal waters, Iceland: implications for Precambrian Iron Formations Geology 24 323326 10.1130/0091-7613(1996)024<0323:DOIASP>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Konhauser, K.O. Jones, B. Phoenix, V.R. Ferris, G. and Renaut, R.W., 2004 The microbial role in hot spring silicification Ambio 33 552558 10.1579/0044-7447-33.8.552.CrossRefGoogle ScholarPubMed
Kostka, J.E. and Nealson, K.H., 1995 Dissolution and Reduction of magnetite by bacteria Environmental Science & Technology 29 25352540 10.1021/es00010a012.CrossRefGoogle ScholarPubMed
Kostka, J.E. Haefele, E. Viehwegar, R. and Stuki, J.W., 1999 Respiration and dissolution of iron(III)-containing clay minerals by bacteria Environmental Science & Technology 33 31273133 10.1021/es990021x.CrossRefGoogle Scholar
Kukkadapu, R.K. Zachara, J.M. Smith, S.C. Fredrickson, J.K. and Liu, C.X., 2001 Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments Geochimica et Cosmochimica Acta 65 29132924 10.1016/S0016-7037(01)00656-1.CrossRefGoogle Scholar
Leapman, R.D. and Sywt, C.R., 1988 Separation of overlapping core edges in electron energy loss spectra by multiple-least-squares fitting Ultramicroscopy 26 393403 10.1016/0304-3991(88)90239-2.CrossRefGoogle ScholarPubMed
Leapman, R.D. Grunes, L.A. and Fejes, P.L., 1982 Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory The American Physical Society 26 614635.Google Scholar
Leppard, G.G. Heissenberger, A. and Herndl, G.J., 1996 Ultrastructure of marine snow I. Transmission electron microscopy methodology. Marine Ecology Progress Series 135 289298 10.3354/meps135289.CrossRefGoogle Scholar
Li, Y.L. Zhang, C.L. Yang, J. Deng, B. and Vali, H., 2004 Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium Geochimica et Cosmochimica Acta 68 32513260 10.1016/j.gca.2004.03.004.CrossRefGoogle Scholar
Liu, C. Kota, S. Zachara, J.M. Fredrickson, J.K. and Brinkman, C.K., 2001 Kinetic analysis of the bacterial reduction of goethite Environmental Science & Technology 35 24822490 10.1021/es001956c.CrossRefGoogle ScholarPubMed
Lovley, D.R. Coates, J.D. Woodward, J.C. and Phillips, E.J.P., 1995 Benzene oxidation coupled to sulfate reduction Applied and Environmental Microbiology 61 953958.CrossRefGoogle ScholarPubMed
Middleton, S.S. Latmani, R.B. Mackey, M.R. Ellisman, M.H. Tebo, B.M. and Criddle, C.S., 2003 Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cellassociated reduced chromium and inhibits growth Biotechnology and Bioengeineering 83 627637 10.1002/bit.10725.CrossRefGoogle ScholarPubMed
Nealson, K.H. and Little, B., 1997 Breathing manganese and iron: solid-state respiration Advances in Applied Microbiology 45 213239 10.1016/S0065-2164(08)70264-8.CrossRefGoogle Scholar
Nealson, K.H. and Saffarini, D., 1994 Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation Annual Reviews in Microbiology 48 311343 10.1146/annurev.mi.48.100194.001523.CrossRefGoogle ScholarPubMed
Nevin, K.P. and Lovley, D.R., 2002 Mechanisms for Fe(III) oxide reduction in sedimentary environments Geomicrobiological Journal 19 141159 10.1080/01490450252864253.CrossRefGoogle Scholar
Newman, D.K. and Kolter, R., 2000 A role for excreted quinones in extracellular electron transfer Nature 405 9397.CrossRefGoogle Scholar
Paterson, J.H. and Krivanek, O.L. (1990) ELNES of 3d transition-metal oxides, II. Variations with oxidation state and crystal structure. Ultramicroscopy, 32, 319.CrossRefGoogle Scholar
Roden, E.E. and Zachara, J.M., 1996 Microbial reduction of crystalline Fe(III) oxides: influence of oxide surface area and potential for cell growth Environmental Science & Technology 30 16181628 10.1021/es9506216.CrossRefGoogle Scholar
Taftø, J. and Krivanek, O.L., 1982 Site-specific valence determination by electron energy-loss spectroscopy Physical Review Letters 48 560563 10.1103/PhysRevLett.48.560.CrossRefGoogle Scholar
Tazaki, K. Asada, R., Dominguez, E.A. Mas, G.R. and Cravero, F., 2001 Microbes associated with clay minerals: formation of bio-halloysite A Clay Odyssey 569576.CrossRefGoogle Scholar
Tazaki, K. and Asada, R., 2007 Transmission electron microscopic observation of mercury-bearing bacterial clay minerals in a small-scale gold mine in Tanzania Geobicrobiology Journal 24 477489 10.1080/01490450701572317.CrossRefGoogle Scholar
van Aken, P.A. and Liebscher, , 2002 Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23 electron ecergy-loss near-edge spectra Physics and Chemistry of Minerals 29 188200 10.1007/s00269-001-0222-6.CrossRefGoogle Scholar
van Aken, P.A. Liebscher, B. and Styrsa, V.J., 1998 Quantitative determination of iron oxidation states in minerals using Fe L-2,L-3-edge electron energy-loss nearedge structure spectroscopy Physics and Chemistry of Minerals 25 323327 10.1007/s002690050122.CrossRefGoogle Scholar
van Aken, P.A. Styrsa, V.J. Liebscher, B. Woodland, A.B. and Redhammer, G.J., 1999 Microanalysis of Fe3+/ΣFe in oxide and silicate minerals by investigation of electron energy-loss near-edge structures (ELNES) at the Fe M2,3 edge Physics and Chemistry of Minerals 26 574590 10.1007/s002690050222.CrossRefGoogle Scholar
Weiner, S. and Dove, P.M., 2003 An overview of biomineralization processes and the problem of the vital effects Biomineralization 54 124.Google Scholar
Zhang, S. Livi, K.J.T. Gaillot, A. Stone, A.T. and Veblen, D.R., 2010 Determination of manganese valence state in (Mn3+, Mn4+) minerals by electron energy loss spectroscopy American Mineralogist 95 17411746 10.2138/am.2010.3468.CrossRefGoogle Scholar