Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-10T21:53:21.379Z Has data issue: false hasContentIssue false

Alteration of Phlogopite to Corrensite at Sharbot Lake, Ontario

Published online by Cambridge University Press:  02 April 2024

C. R. De Kimpe*
Affiliation:
Agriculture Canada Research Station, 2560 Boulevard Hochelaga, Sainte-Foy, Quebec G1V 2J3, Canada
N. Miles
Affiliation:
Land Resource Research Center, Agriculture Canada, Central Experimental Farm, Ottawa, Ontario K1A 0C6, Canada
H. Kodama
Affiliation:
Land Resource Research Center, Agriculture Canada, Central Experimental Farm, Ottawa, Ontario K1A 0C6, Canada
J. Dejou
Affiliation:
INRA, Station d'Agronomie, 12 Ave. de l'Agriculture, 63039 Clermont-Ferrand Cedex, France
*
5Present address: Land Resource Research Center, Agriculture Canada, Central Experimental Farm, Ottawa, Ontario K1A 0C6

Abstract

A low-charge corrensite, i.e., a regular 1:1 interstratified smectite/chlorite was found in veins and fissures of an extensively fractured dolomite south of Perth, Ontario, Canada. Total chemical analysis indicated that the mineral was trioctahedral, having a structural formula corresponding to:

(Ca0.17)(Mg7.36Al0.90Fe3+ 0.45Fe2+ 0.42)VI(Si6.06Al1.94)IVO20(OH)10.

The coefficient of variation (CV) of the d(00l) spacings calculated for the mineral from X-ray powder diffraction data was 0.42, well below the maximum recommended value for corrensite, 0.75. The corrensite coexists with phlogopite, which is present as small (~0.5 mm) crystals throughout the rock and locally as large (~5 cm) crystals in pegmatitic veins. Microscopic observatiofls of large phlogopite crystals partially altered to corrensite suggest that corrensite formed at the expense of phlogopite by hydrothermal alteration.

Résumé

Résumé

Une corrensite, minéral interstratifié régulier 1:1 smectite/chlorite, a été trouvée dans les veines et les fissures d'un affleurement dolomitique très fortement fragmenté au sud de Perth, Ontario, Canada. L'analyse chimique totale a montré que le minéral était trioctaédrique avec une formule structurale correspondant à:

(Ca0.17)(Mg7.36Al0.90Fe3+0.45Fe2+0.42)VI(Si6.06Al1.94)IVO20(OH)10.

Le coefficient de variation (CV) des espacements d(00l) calculé pour le minéral à partir des données de RX était de 0,42, soit bien en deça de la limite recommandée, 0,7 5. La corrensite coexiste avec la phlogopite qui est présente sous forme de petits cristaux (~0,5 mm) dans tout l'affleurement et aussi sous forme de grands cristaux (~5 cm) dans des veines de pegmatite. Un examen microscopique de plusieurs grands cristaux de phlogopite partiellement altérés en corrensite a suggéré que celle-ci est formée aux dépens de la phlogopite par altération hydrothermale.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution no. 304 Sainte-Foy Agriculture Canada Research Station and no. 87-25 Land Resource Research Center, Ottawa.

References

Alietti, A., 1957 Some interstratified clay minerals of the Taro Valley Clay Min. Bull. 3 207211.CrossRefGoogle Scholar
April, R. H., 1980 Regularly interstratified chlorite/vermiculite in contact metamorphosed red beds, Newark Group, Connecticut Valley Clays & Clay Minerals 28 111.CrossRefGoogle Scholar
April, R. H., 1981 Trioctahedral smectite and interstratified chlorite/smectite in Jurassic strata of the Connecticut Valley Clays & Clay Minerals 29 3139.CrossRefGoogle Scholar
Bailey, S. W., Brindley, G. W., Kodama, H. and Martin, R. T., 1982 Report of The Clay Minerals Society Nomenclature Committee for 1980–1981 Clays & Clay Minerals 30 7678.CrossRefGoogle Scholar
Bergaya, F., Brigatti, M. F. and Fripiat, J. J., 1985 Contribution of infrared spectroscopy to the study of corrensite Clays & Clay Minerals 33 458462.CrossRefGoogle Scholar
Bourne, J. H., 1974 The petrogenesis of the humite group minerals in regionally metamorphosed marbles of the Grenville supergroup Ontario Ph.D. thesis, Queen’s University, Kingston.Google Scholar
Bradley, W. F. and Weaver, C. E., 1956 A regularly interstratified chlorite-vermiculite clay mineral Amer. Mineral. 41 497504.Google Scholar
Brigatti, M. F. and Poppi, L., 1984 Crystal chemistry of corrensite: A review Clays & Clay Minerals 32 391399.CrossRefGoogle Scholar
Brigatti, M. F. and Poppi, L., 1985 Interlayer water and swelling properties of natural and homoionic corrensite Clays & Clay Minerals 33 128134.CrossRefGoogle Scholar
Brown, G., Bourguignon, P. and Thorez, J., 1974 A lithium-bearing aluminian regular mixed layer montmorillonite-chlorite from Huy, Belgium Clay Miner. 10 135144.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. and Zussman, J., 1962 Rock Forming Minerals, Vol. 3. Sheet Silicates New York Wiley.Google Scholar
Earley, J. W., Brindley, G. W., McVeagh, W. J. and Vanden Heuvel, R. C., 1956 A regularly interstratified montmorillonite-chlorite Amer. Mineral. 41 258267.Google Scholar
Farmer, V. C., 1974 The Infrared Spectra of Minerals London Mineralogical Society.CrossRefGoogle Scholar
Foster, M. D., 1960 Interpretation of the composition of trioctahedral micas U.S. Geol. Surv. Prof. Pap. 354 1149.Google Scholar
Grim, R. E., Droste, J. B., Bradley, W. F. and Swineford, A., 1960 A mixed-layer clay mineral association with an evaporate Clays and Clay Minerals, Proc. 8th Natl. Conf, Norman, Oklahoma, 1959 New York Pergamon Press 228236.Google Scholar
Hewitt, D. F., 1956 The Grenville region of Ontario Roy. Soc. Can. Spec. Publ. 1 2241.Google Scholar
Johnson, L. J., 1964 Occurrence of regularly interstratified chlorite-vermiculite as a weathering product of chlorite in a soil Amer. Mineral. 49 556572.Google Scholar
Jupe, D. F. and Jackson, B., 1964 Madoc area: Map 2053 Ontario Department of Mines Ontario Toronto.Google Scholar
Kübler, B., 1973 La corrensite, indicateur possible de milieux de sédimentation et du degré de transformation d’un sédiment Bull. Centre Rech. Pau-SNPA 7 543556.Google Scholar
Lippmann, F., 1954 Uber einen Keuperton von Zaisersweiher bei Maulbronn Heidelb. Beit. Mineral. Petrogr. 4 130134.Google Scholar
Lippmann, F., 1956 Clay minerals from the Rot member of the Triassic near Göttingen, Germany J. Sed. Petr. 26 125139.CrossRefGoogle Scholar
MacEwan, D. M. C. (1961) Montmorillonite minerals: in The X-ray Identification and Crystal Structures of Clay Minerals, Brown, G., ed., Mineralogical Society, London, 143207.Google Scholar
Mackenzie, R. C., 1972 Differential Thermal Analysis London Academic Press.Google Scholar
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals, Proc. 7th Natl. Conf, Washington, D.C., 1958 New York Pergamon Press 317327.Google Scholar
Miles, N. and De Kimpe, C. R., 1985 Application of glycerol/ethanol solutions for solvation of smectites dried on glass slides Can. J. Soil Sci. 65 229232.CrossRefGoogle Scholar
Millot, G., 1964 Géologie des Argiles Paris Masson.Google Scholar
Nadeau, P., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984 Interstratified clays as fundamental particles Science 225 923925.CrossRefGoogle ScholarPubMed
Nishiyama, T., Shimoda, S., Shimosaka, K. and Kanaoka, S., 1975 Lithium-bearing tosudite Clays & Clay Minerals 23 337342.CrossRefGoogle Scholar
Proust, D., 1982 Supergene alteration of metamorphic chlorite in an amphibolite from Massif Central, France Clay Miner. 17 159173.CrossRefGoogle Scholar
Ross, G. J. and Kodama, H., 1976 Experimental alteration of a chlorite into a regularly interstratified chlorite-vermiculite by chemical oxidation Clays & Clay Minerals 24 183190.CrossRefGoogle Scholar
Shaw, D. M., Moxham, R. L., Filby, R. H. and Lapkowsky, W. W., 1963 The petrology and geochemistry of some Grenville skams. Part 1: Geology and petrography Can. Mineral. 7 420442.Google Scholar
Silver, L. T. and Lumbers, S. B. (1965) Geochronologic studies in the Bancroft-Madoc area of the Grenville Province, Ontario, Canada: Geol. Soc. Amer. Spec. Paper 87, 156 pp.Google Scholar
Sudo, T. and Shimoda, S., 1978 Clays & Clay Minerals of Japan Amsterdam Elsevier.Google Scholar
Van der Marel, H. W. and Beutelspacher, H., 1976 Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures Amsterdam Elsevier.Google Scholar
Velde, B., 1985 Clay Minerals: A Physico-Chemical Explanation of Their Occurrence Amsterdam Elsevier.Google Scholar
Veniale, F., Van der Marel, H. W. and Heller, L., 1970 Identification of some 1:1 regular interstratified trioctahedral clay minerals Proc. Int. Clay Conf, Tokyo, 1969, Vol. 1 Jerusalem Israel Univ. Press 233244.Google Scholar
Wynne-Edwards, H. R., 1957 Structure of the Westport concordant pluton in the Grenville, Ontario J. Geol. 65 639649.CrossRefGoogle Scholar
Wynne-Edwards, H. R., 1967 Geology of Westport, Ontario: Map 1182 A Geol. Surv. Canada Ontario Ottawa.Google Scholar