Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-25T19:35:09.087Z Has data issue: false hasContentIssue false

Al-Pillaring of Saponite with the Al Polycation [Al13(OH)24 (H2O)24]15+ Using a New Synthetic Route

Published online by Cambridge University Press:  01 January 2024

Miguel Angel Vicente*
Affiliation:
Departamento de Química Inorgánica, Universidad de Salamanca, Plaza de la Merced, s/n., 37008-Salamanca, Spain
Jean-François Lambert
Affiliation:
Laboratoire de Reactivité de Surface, Université Pierre et Marie Curie, 4 Place Jussieu, Tour 54, Casier 178, 75252 Paris Cedex 05, France
*
*E-mail address of corresponding author: mavicente@usal.es

Abstract

The intercalation of a saponite with the Al polycation [Al13(OH)24(H2O)24]15+ is described. This polycation is obtained by reaction of alumina with Al chloride. The intercalation is achieved by reaction of very concentrated solutions of this polycation with the clay in powder form. Solids with a basal spacing of 18.9 Å were obtained in this way, stable up to 700°C (17.0 Å). The Langmuir surface area of the intercalated solid was 366 m2/g, and that value decreases to 119, 138 and 125 m2/g for the solids pillared at 500, 600 and 700°C, respectively.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allouche, L. Huguenard, C. and Taulelle, F., (2001) 3QMAS of three aluminum polycations: space group consistency between NMR and XRD Journal of Physics and Chemistry of Solids 62 15251531 10.1016/S0022-3697(01)00069-5.Google Scholar
Breuil, H., (1965) Sur les chlorures et bromures basiques d’aluminium Annales de Chimie 10 467 493.Google Scholar
de la d’Espinose Caillerie, J.-B. Man, P.P. Vicente, M.A. and Lambert, J.-F., (2002) 27Al MQ-MAS NMR as a tool for structure determination in nanocomposite materials: the nature of Al pillars in ‘Al13-heidi’ pillared clays Journal of Physical Chemistry B 106 41334138 10.1021/jp014024j.Google Scholar
Fetter, G. Heredia, G. Velázquez, L.A. Maubert, A.M. and Bosch, P., (1997) Synthesis of aluminum-pillared montmorillonites using highly concentrated clay suspensions Applied Catalysis A: General 162 4145 10.1016/S0926-860X(97)00081-1.Google Scholar
Gil, A. Gandía, L.M. and Vicente, M.A., (2000) Recent advances in the synthesis and catalytic applications of pillared clays Catalysis Reviews — Science and Engineering 42 145212 10.1081/CR-100100261.Google Scholar
Heath, S.L. Jordan, P.A. Johnson, I.D. Moore, G.R. Powell, A.K. and Helliwell, M., (1995) Comparative X-ray and 27Al NMR spectroscopic studies of the speciation of aluminum in aqueous systems: Al(III) complexes of N(CH2CO2H)2 (CH2CH2OH) Journal of Inorganic Biochemistry 59 785794 10.1016/0162-0134(94)00064-H.Google Scholar
Jordan, P.A. Clayden, N.J. Heath, S.L. Moore, G.R. Powell, A.K. and Tapparo, A., (1996) Defining speciation profiles of Al3+ complexed with small organic ligands: the Al3+-heidi system Coordination Chemistry Reviews 149 281 309.Google Scholar
Kaloidas, V. Koufopanos, C.A. Gangas, N.H. and Papayannakos, N.G., (1995) Scale-up studies for the preparation of pillared layered clays at 1 kg per batch level Microporous Materials 5 97106 10.1016/0927-6513(95)00047-D.Google Scholar
Lambert, J.-F. and Poncelet, G., (1997) Acidity in pillared clays: origin and catalytic manifestations Topics in Catalysis 4 4356 10.1023/A:1019175803068.Google Scholar
Mitchell, I.V., (1990) Pillared Layered Structure: Current Trends and Applications London Elsevier.Google Scholar
Molina, R. Vieira-Coelho, A. and Poncelet, G., (1992) Hydroxy-Al pillaring of concentrated clay suspensions Clays and Clay Minerals 40 480482 10.1346/CCMN.1992.0400413.Google Scholar
Molina, R. Moreno, S. and Poncelet, G., (2000) Al-pillared hectorite and montmorillonite prepared from concentrated clay suspensions: structural, textural and catalytic properties Studies in Surface Science and Catalysis 130 983988 10.1016/S0167-2991(00)80326-2.Google Scholar
Moreno, S. Gutiérrez, E. Álvarez, A. Papayannakos, N.G. and Poncelet, G., (1997) Al-pillared clays: from lab synthesis to pilot scale production. Characterization and catalytic properties Applied Catalysis A: General 165 103114 10.1016/S0926-860X(97)00194-4.Google Scholar
Rouquerol, F. Rouquerol, J. and Sing, K., (1999) Adsorption by powders and porous solids — Principles, methodology and Applications London Academic Press.Google Scholar
Sánchez, A. and Montes, M., (1998) Influence of the preparation parameters (particle size and aluminium concentration) on the textural properties of Al-pillared clays for a scale-up process Microporous and Mesoporous Materials 21 117125 10.1016/S1387-1811(97)00057-7.Google Scholar
Schoonheydt, R.A. and Leeman, H., (1992) Pillaring of saponite in concentrated medium Clay Minerals 27 249252 10.1180/claymin.1992.027.2.09.Google Scholar
Seichter, W. Mögel, H.-J. Brand, P. and Salah, D., (1998) Crystal structure and formation of the aluminium hydroxide chloride [Al13(OH)24(H2O)24]Cl15.13 H2O European Journal of Inorganic Chemistry 795 797.Google Scholar
Storaro, L. Lenarda, M. Perissinotto, M. Lucchini, V. and Ganzerla, R., (1998) Hydroxy-Al pillaring of concentrated suspensions of smectite clays Microporous and Mesoporous Materials 20 317331 10.1016/S1387-1811(97)00045-0.Google Scholar
Vicente, M.A. and Lambert, J.-F., (1999) Al-pillared saponites. Part 4. Pillaring with a new Al13 oligomer containing organic ligands Physical Chemistry Chemical Physics (incorporating Faraday Transactions) 1 16331639 10.1039/a808291j.Google Scholar