Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-20T03:56:42.391Z Has data issue: false hasContentIssue false

Adsorption of Ethylenediamine (EDA) on Montmorillonite Saturated with Different Cations—III. Na-, K- and Li-Montmorillonite: Ion-Exchange, Protonation, Co-Ordination and Hydrogen-Bonding

Published online by Cambridge University Press:  01 July 2024

R. D. Laura
Affiliation:
Laboratoire de Physico-Chimie Minérale, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
P. Cloos
Affiliation:
Laboratoire de Physico-Chimie Minérale, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium

Abstract

Ethylenediamine (EDA) is adsorbed from aqueous solution on Na-, K- and Li-montmorillonite as the monoprotonated cation (EDAH+) through an ion-exchange process. On washing with distilled water the second amine function is protonated—probably through dissociation of water near the clay surface—and simultaneously formed alkali hydroxide is removed.

In air-dried clay films, prepared from unwashed suspensions, EDA is retained mainly through hydrogen-bonding with water co-ordinated to the exchangeable cation.

EDA adsorbed from the vapour phase is retained through co-ordination, either direct or indirect (i.e. through a ‘water-bridge’), depending on the hydration properties of the exchangeable cation. Indirect coordination increases the stability of the amino-clay complex against atmospheric humidity and heating in vacuum in the order K+ < Na+ < Li+.

Upon heating co-ordinated EDA is almost completely desorbed, whereas EDAH+ and EDAH22+ decompose above 160°C to form NH4+.

Type
Research Article
Copyright
Copyright © 1975, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailar, J. G. Jr., (1956) The Chemistry of the Co-ordination Compounds New York Reinhold 3.Google Scholar
Cloos, P. and Laura, R. D., (1972) Adsorption of ethylene-diamine (EDA) on montmorillonite saturated with different cations—II. Hydrogen- and ethylenediammonium-montmorillonite: protonation and hydrogen bonding Clays and Clay Minerals 20 259270.10.1346/CCMN.1972.0200503CrossRefGoogle Scholar
Cloos, P. and Mortland, M. M., (1965) Expansion and electrical conductivity of montmorillonite in ammonia atmosphere Clays and Clay Minerals 13 231246.Google Scholar
Farmer, V. C. and Mortland, M. M., (1965) An i.r. study of complexes of ethylamine with ethylammonium and copper ions in montmorillonite J. Phys. Chem. 69 683686.10.1021/j100886a515CrossRefGoogle Scholar
Farmer, V. C. and Mortland, M. M., (1966) An i.r. study of the co-ordination of pyridine and water to exchangeable cations in montmorillonite and saponite J. chem. Soc. A 344351.10.1039/j19660000344CrossRefGoogle Scholar
Fripiat, J. J., (1968) Surface fields and transformation of adsorbed molecules in soil colloids Trans. 9th Int. Cong. Soil Sci. 1 679689.Google Scholar
Fripiat, J. J. Jelli, A. Poncelet, G. and André, J., (1965) Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonite and silicas J. Phys. Chem. 69 27852797.CrossRefGoogle Scholar
Fripiat, J. J. Pennequin, M. Poncelet, G. and Cloos, P., (1969) Influence of the van der Waals forces on the i.r. spectra of short aliphatic alkylammonium cations held on montmorillonite Clay Minerals 8 119134.CrossRefGoogle Scholar
Fripiat, J. J. Servais, A. and Léonard, A., (1962) Etude de l’adsorption des amines par les montmorillonites—III. La nature de la liaison amine-montmorillonite Bull. Soc. Chim. Fr. 635644.Google Scholar
Heller, L. and Yariv, S., (1969) Sorption of some anilines by Mn-, Co-, Ni-, Cu-, Zn-and Cd-montmorillonite Proc. Intern. Clay Conf., Tokyo 1 741755.Google Scholar
Laura, R. D. and Cloos, P., (1970) Adsorption of ethylene-diamine (EDA) on montmorillonite saturated with different cations—I. Copper-montmorillonite: Co-ordination Proc. Reunión Hispano-Belga de Minerales de la Aredia 7686.Google Scholar
Léonard, A. Servais, A. and Fripiat, J. J., (1962) Etude de l’adsorption des amines par les montmorillonites—II. La structure des complexes Bull. Soc. Chim. Fr. 625635.Google Scholar
Mortland, M. M., (1968) Protonation of compounds at clay surfaces Trans. 9th Int. Cong. Soil Sci. 1 691699.Google Scholar
Mortland, M. M. Fripiat, J. J. Chaussidon, J. and Uytter-hoeven, J., (1963) Interaction between ammonia and the expanding lattices of montmorillonite and vermiculite J. Phys. Chem. 67 248258.10.1021/j100796a009CrossRefGoogle Scholar
Mortland, M. M. and Raman, K. V., (1968) Surface acidity of smectites in relation to hydration, exchangeable cation, and structure Clays and Clay Minerals 16 393398.10.1346/CCMN.1968.0160508CrossRefGoogle Scholar
Parfîtt, R. L. and Mortland, M. M., (1968) Ketone adsorption on montmorillonite Soil Sci. Soc. Am. Proc. 32 355363.10.2136/sssaj1968.03615995003200030027xCrossRefGoogle Scholar
Powell, D. B. and Sheppard, N., (1961) The assignment of i.r. absorption bands to fundamental vibrations in some metal-ethylenediamine complexes Spectrochim. Acta 17 6876.10.1016/0371-1951(61)80012-XCrossRefGoogle Scholar
Russel, J. D., (1965) I.R. study of the reactions of ammonia with montmorillonite and saponite Trans Faraday Soc. 61 22842294.10.1039/tf9656102284CrossRefGoogle Scholar
Sabatini, A. and Califano, S., (1960) I.R. spectra in polarization light of ethylenediamine and ethylenediamine-d4 Spectrochim. Acta 16 677688.10.1016/0371-1951(60)80118-XCrossRefGoogle Scholar
Servais, A. Fripiat, J. J. and Léonard, A., (1962) Etude de l’adsorption des amines par les montmorillonites—I. Les processus chimiques Bull. Soc. Chim. Fr. 617625.Google Scholar
Uytterhoeven, J. B. Christner, L. G. and Hall, K. W., (1965) Studies of the hydrogen held by solids—VIII. The decationated zeolites J. Phys. Chem. 69 21172126.10.1021/j100890a052CrossRefGoogle Scholar
Van Niekerk, J. N., (1960) Vacuum furnace for high temperature X-ray diffractometry J. Scient. Instrum. 37 172175.10.1088/0950-7671/37/5/307CrossRefGoogle Scholar
Yariv, S. Heller, L. and Kaufherr, N., (1969) Effect of acidity in montmorillonite interlayers on the sorption of aniline derivatives Clays and Clay Minerals 17 301308.10.1346/CCMN.1969.0170507CrossRefGoogle Scholar
Yariv, S. Heller, L. Sofer, Z. and Bodenheimer, W., (1968) Sorption of aniline by montmorillonite Israel J. Chem. 6 741756.10.1002/ijch.196800092CrossRefGoogle Scholar