Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-25T13:18:19.591Z Has data issue: false hasContentIssue false

The Smectite-to-Disordered Kaolinite Transition in a Tropical Soil Chronosequence, Pacific Coast, Costa Rica

Published online by Cambridge University Press:  01 January 2024

G. Burch Fisher*
Geology Department, Middlebury College, Middlebury, VT, 05753 USA
Peter C. Ryan*
Geology Department, Middlebury College, Middlebury, VT, 05753 USA
Current address: Earth Sciences Department, Dartmouth College, Hanover, NH, 03755 USA
*E-mail address of corresponding author:


Soils developed on Quaternary fluvial fill terraces in the humid tropics of Costa Rica display progressive changes in mineral assemblage, chemical composition and particle size with age. Clay minerals from B horizons of active floodplains are predominantly smectite with lesser amounts of disordered kaolinite. B horizons in 5 to 10 ka soils consist of sub-equal amounts of smectite and disordered kaolinite, and soils on 37–125 ka terraces consist of disordered kaolinite with only traces of smectite. The composition of the smectite, as determined by EDX scans of smectite-rich pore space, is [(Mg0.2,Ca0.1)(Fe0.6Al1.4)(Si3.6Al0.4)O10(OH)2], consistent with ferruginous beidellite.

Bulk mineral assemblage varies from a smectite-plagioclase-augite-quartz-magnetite assemblage in ⩽ 10 ka terrace soils to a disordered kaolinite-goethite-hematite-quartz-magnetite assemblage in ⩾37 ka terrace soils. Leaching results in rapid loss of soluble base cations and residual concentration of Ti and Zr indicates mass losses of ∼50% by chemical denudation by 125 ka. Plots of terrace age vs. various measures of clay mineralogy, chemical composition, and particle size produce parabolic curves consistent with rapid chemical weathering pre-37 ka and slower to imperceptible rates of change from 37 to 125 ka. For some pedogenic properties, particularly particle size and concentrations of base cations and Zr, soils appear to reach steady-state conditions within 37 ka.

These results were applied to interpretation of landscape evolution in this tectonically active region by: (1) facilitating identification of two Holocene (5 ka and 10 ka) terraces on the Esterillos Block 5–30 m above sea level (masl), and two Pleistocene terraces ⩾ 125 ka on the Parrita Block 30 masl, and, in turn, (2) documenting uplift rates as high as 4.4 m/ka between 37 and 10 ka on the Esterillos Block, and as low as 0.1 m/ka over the past 125 ka on the adjacent Parrita Block. These findings are consistent with previous work indicating that the subduction of anomalous bathymetric features at the Middle America Trench is having a significant impact on fore-arc dynamics and topography over relatively short geological time periods and spatial scales.

Research Article
Copyright © 2006, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Altschuler, Z.S. Dwornik, E.J. and Kramer, H., (1963) Transformation of montmorillonite to kaolinite during weathering Science 141 148152 10.1126/science.141.3576.148.CrossRefGoogle ScholarPubMed
Battacharyya, T. Pal, D.K. and Srivastava, P., (1999) Role of zeolites in persistence of high altitude ferruginous Alfisols of the humid tropical Western Ghats, India Geoderma 90 263276 10.1016/S0016-7061(98)00122-0.CrossRefGoogle Scholar
Bestland, E.A. Retallack, G.J. and Swisher, C.C., (1997) Stepwise climate change recorded in Eocene-Oligocene paleosol sequences from Central Oregon Journal of Geology 105 153172 10.1086/515906.CrossRefGoogle Scholar
Birkeland, P.W., (1999) Soils and Geomorphology Third Edition New York Oxford University Press.Google Scholar
Churchman, G.J. Whitton, J.S. Claridge, G.G.C. and Theng, B.K.G., (1984) Intercalation method using formamide for differentiating halloysite from kaolinite Clays and Clay Minerals 32 241248 10.1346/CCMN.1984.0320401.CrossRefGoogle Scholar
Cradwick, P.D. and Wilson, M.J., (1972) Calculated X-ray diffraction profiles for interstratified kaolinite-montmorillonite Clay Minerals 9 395405 10.1180/claymin.1972.009.4.04.CrossRefGoogle Scholar
Craig, D.C. and Loughnan, F.C., (1964) Chemical and mineralogical transformations accompanying weathering of basic rocks from New South Wales Australian Journal of Soil Research 2 218234 10.1071/SR9640218.CrossRefGoogle Scholar
Delvaux, B. Herbillon, A.J. Vielvoye, L. and Mestdagh, M.M., (1990) Surface properties of clay mineralogy of hydrated halloysitic soil clays. II: evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays Clay Minerals 25 141160 10.1180/claymin.1990.025.2.02.CrossRefGoogle Scholar
deMenocal, P. Ortiz, J. Guilderson, T. and Sarnthein, M., (2000) Coherent high- and low-latitude climate variability during the Holocene warm period Science 288 21982202 10.1126/science.288.5474.2198.CrossRefGoogle ScholarPubMed
Drever, J.I., (1973) The preparation of oriented clay mineral specimens for X-ray diffraction analysis by a filter membrane peel technique American Mineralogist 58 553554.Google Scholar
Fisher, D.M. Gardner, T.W. Marshall, J.S. Sak, P.B. and Protti, M., (1998) Effect of subducting sea-floor roughness on fore-arc kinematics, Pacific coast, Costa Rica Geology 26 467470 10.1130/0091-7613(1998)026<0467:EOSSFR>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Gardner, T.W. Verdonck, D. Pinter, N.M. Slingerland, R. Furlong, K.P. Bullard, T.F. and Wells, S.G., (1992) Quaternary uplift astride the aseismic Cocos Ridge, Pacific coast, Costa Rica Geological Society of America Bulletin 104 219232 10.1130/0016-7606(1992)104<0219:QUATAC>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Goudie, A.S. and Middleton, N.J., (2001) Saharan dust storms: nature and consequences Earth-Science Reviews 56 179204 10.1016/S0012-8252(01)00067-8.CrossRefGoogle Scholar
Harris, S.A. Neumann, A.M. Stouse, A.D. Jr., (1971) The major soil zones of Costa Rica Soil Science 112 439451 10.1097/00010694-197112000-00008.CrossRefGoogle Scholar
Herbillon, A.J. Frankart, R. and Vielvoye, L., (1981) An occurrence of interstratified kaolinite-smectite minerals in a red-black soil toposequence Clay Minerals 16 195201 10.1180/claymin.1981.016.2.07.CrossRefGoogle Scholar
Hillier, S., (1999) Use of an air brush to spray dry samples for X-ray powder diffraction Clay Minerals 34 127135 10.1180/000985599545984.CrossRefGoogle Scholar
Hillier, S. and Ryan, P.C., (2002) Identification of halloysite (7Å) by ethylene glycol solvation: the ‘MacEwan effect’ Clay Minerals 37 487496 10.1180/0009855023730047.CrossRefGoogle Scholar
Hughes, J.C., (1980) Crystallinity of kaolin minerals and their weathering sequence in some soils from Nigeria, Brazil and Colombia Geoderma 24 317325 10.1016/0016-7061(80)90059-2.CrossRefGoogle Scholar
Johnson, D.L. Keller, E.A. and Rockwell, T.K., (1990) Dynamic pedogenesis: new views on some key soil concepts and a model for interpreting soils Quaternary Research 33 306319 10.1016/0033-5894(90)90058-S.CrossRefGoogle Scholar
Kantor, W. and Schwertmann, U., (1974) Mineralogy and genesis of clays in red-black soil toposequences on basic igneous rocks in Kenya Journal of Soil Science 25 6778 10.1111/j.1365-2389.1974.tb01104.x.CrossRefGoogle Scholar
Kautz, C.Q. and Ryan, P.C., (2003) The 10 Å to 7 Å halloysite transition in a tropical soil sequence, Costa Rica Clays and Clay Minerals 51 252263 10.1346/CCMN.2003.0510302.CrossRefGoogle Scholar
Lachniet, M.S. and Seltzer, G.O., (2002) Late Quaternary glaciation of Costa Rica Geological Society of America Bulletin 114 547558 10.1130/0016-7606(2002)114<0547:LQGOCR>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Merritts, D.J. Chadwick, O.A. Hendricks, D.M. Brimhall, G.H. and Lewis, C.J., (1992) The mass balance of soil evolution on late Quaternary marine terraces, northern California Geological Society of America Bulletin 104 14561470 10.1130/0016-7606(1992)104<1456:TMBOSE>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Meybeck, M., (1987) Global chemical weathering of surficial rocks estimated from dissolved river loads American Journal of Science 287 401428 10.2475/ajs.287.5.401.CrossRefGoogle Scholar
Moore, D.M. Reynolds, R.C. Jr., (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 378 pp.Google Scholar
Muhs, D.R., (2001) Evolution of soils on quaternary reef terraces of Barbados, West Indies Quaternary Research 56 6678 10.1006/qres.2001.2237.CrossRefGoogle Scholar
Ndayiragije, S. and Delvaux, B., (2003) Coexistence of allophane, gibbsite, kaolinite and hydroxy-Al-interlayered 2:1 clay minerals in a perudic Andosol Geoderma 117 203214 10.1016/S0016-7061(03)00123-X.CrossRefGoogle Scholar
Nieuwnhuyse, A. and van Breemen, N., (1997) Quantitative aspects of weathering and neoformation in selected Costa Rican volcanic soils Soil Science Society of America Journal 61 14501458 10.2136/sssaj1997.03615995006100050024x.CrossRefGoogle Scholar
Nordt, L.C. Wilding, L.P. Lynn, W.C. and Crawford, C.C., (2004) Vertisol genesis in a humid climate of the coastal plain of Texas, U.S.A Geoderma 122 83102 10.1016/j.geoderma.2004.01.020.CrossRefGoogle Scholar
Özkan, A.I. and Ross, G.F., (1979) Ferruginous beidellites in Turkish soils Soil Science Society of America Journal 43 12421248 10.2136/sssaj1979.03615995004300060039x.CrossRefGoogle Scholar
Pazzaglia, F.J. Gardner, T.W. Merritts, D., Wohl, E. and Tinkler, K., (1998) River longitudinal profiles and bedrock incision models: stream power and the influence of sediment supply Rivers over Rock: Fluvial Processes in Bedrock Channels Washington, D.C American Geophysical Union 207236 10.1029/GM107p0207 AGU.CrossRefGoogle Scholar
Peterson, L.C. Haug, G.H. Hughen, K.A. and Rohl, U., (2000) Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial Science 290 19471951 10.1126/science.290.5498.1947.CrossRefGoogle ScholarPubMed
Prospero, J.M., Guerzoni, S. and Chester, R., (1996) Saharan dust transport over the North Atlantic Ocean and Mediterranean: an overview The Impact of Desert Dust Across the Mediterranean Dordrecht, The Netherlands Kluwer Academic Publishing 133151 10.1007/978-94-017-3354-0_13.CrossRefGoogle Scholar
Prospero, J.M. Glaccum, R.A. and Nees, R.T., (1981) Atmospheric transport of soil dust from Africa to South America Nature 289 570572 10.1038/289570a0.CrossRefGoogle Scholar
Reynolds, R.C. Jr. Reynolds, R.C. III, (1997) NEWMOD-for-Windows©: A computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays Hanover, New Hampshire, USA Published by the authors.Google Scholar
Righi, D. Terribile, F. and Petit, S., (1998) Pedogenic formation of high-charge beidellite in a vertisol of Sardinia (Italy) Clays and Clay Minerals 46 167177 10.1346/CCMN.1998.0460207.CrossRefGoogle Scholar
Righi, D. Terribile, F. and Petit, S., (1999) Pedogenic formation of kaolinite-smectite mixed-layers in a soil toposequence developed from basaltic parent material in Sardinia (Italy) Clays and Clay Minerals 47 505514 10.1346/CCMN.1999.0470413.CrossRefGoogle Scholar
Sak, P.B. Fisher, D.M. Gardner, T.W. Murphy, K. and Brantley, S.L., (2004) Rates of weathering rind formation on Costa Rican basalt Geochimica et Cosmochimica Acta 68 14531472 10.1016/j.gca.2003.09.007.CrossRefGoogle Scholar
Sak, P.B. Fisher, D.M. and Gardner, T.W., (2004) Effects of subducting seafloor roughness on upper plate vertical tectonism: Osa Peninsula, Costa Rica Tectonics 23 TC1017 10.1029/2002TC001474.CrossRefGoogle Scholar
Silver, E., Pisani, P.C., Hutnak, M., Fisher, A., DeShon, H. and Taylor, B. (2004) An 8–10 Ma tectonic event on the Cocos Plate offshore Costa Rica: Result of Cocos Ridge collision? Geophysical Research Letters, 31(18): Art. No. L18601.CrossRefGoogle Scholar
Singh, B. and Gilkes, R.J., (1992) An electron-optical investigation of the alteration of kaolinite to halloysite Clays and Clay Minerals 40 212229 10.1346/CCMN.1992.0400211.CrossRefGoogle Scholar
Środoń, J. Drits, V.A. McCarty, D.K. Hsieh, J.C.C. and Eberl, D.D., (2001) Quantitative X-ray diffraction of clay-bearing rocks from random preparations Clays and Clay Minerals 49 514528 10.1346/CCMN.2001.0490604.CrossRefGoogle Scholar
Takahashi, T. Dahlgren, R. and van Susteren, P., (1993) Clay mineralogy and chemistry of soils formed in volcanic materials in the xeric moisture regime of Northern California Geoderma 59 131150 10.1016/0016-7061(93)90066-T.CrossRefGoogle Scholar
Vidic, N.J. and Lobnik, F., (1997) Rates of soil development of the chronosequence in the Ljubljana basin, Slovenia Geoderma 76 3564 10.1016/S0016-7061(96)00098-5.CrossRefGoogle Scholar
White, A.F. Blum, A.E. Schulz, M.S. Vivit, D.V. Stonestrom, D.A. Larsen, M. Murphy, S.F. and Eberl, D.D., (1998) Chemical weathering in a tropical watershed, Loquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes Geochimica et Cosmochimica Acta 62 209226 10.1016/S0016-7037(97)00335-9.CrossRefGoogle Scholar
Wilson, M.J. and Cradwick, P.D., (1972) Occurrence of interstratified kaolinite-montmorillonite in some Scottish soils Clay Minerals 9 435437 10.1180/claymin.1972.009.4.08.CrossRefGoogle Scholar
Yerima, B.P.K. Calhoun, F.G. Senkayi, A.L. and Dixon, J.B., (1985) Occurrence of interstratified kaolinite-smectite in El Salvador vertisols Soil Science Society of America Journal 49 462466 10.2136/sssaj1985.03615995004900020038x.CrossRefGoogle Scholar