Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-15T05:29:37.696Z Has data issue: false hasContentIssue false

Potential Uses of Local Clay Materials for the Production of Porcelain Electrical Insulators, Ethiopia

Published online by Cambridge University Press:  01 January 2024

Eshetu Bekele Wondemagegnehu*
Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia
Tamirat Addis
Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia
Enyew Amare Zereffa
Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia
Andualem Merga Tullu
Faculty of Chemistry, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland
Belay Brehane
Department of Chemical Engineering, Adama Science and Technology University, P O Box, 1888 Adama, Ethiopia
Lemma Teshome Tufa
Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, PO Box 1888, Adama, Ethiopia Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
Jaebeom Lee
Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea


Clays are extremely variable materials with different mineral compositions, and they are the main ingredients in ceramics applications. Their properties play specific roles in influencing the technological properties and performance of ceramics products. Evaluating the various properties can help to determine the best way to utilize clay materials, such as the locally available Bombawuha (BC) and Denkaka (DC) clays mined from Ethiopia's Bombawuha and Denkaka areas, respectively. The objective of this study was to examine these materials for the purpose of using them to produce quality electrical porcelain insulators. The clay samples were characterized for their chemical composition, mineralogy, thermal properties, plasticity, and particle-size distribution, using atomic absorption spectrometry (AAS), X-ray diffractometry (XRD), differential thermal analysis coupled with thermogravimetric analysis (DTA-TGA), the Atterberg plasticity test, and sieve hydrometer analysis. Based on the characteristics, suitable clay materials were selected and mixed with feldspar and quartz to formulate various porcelain body compositions which were fired at three different temperatures (1200, 1250, and 1300°C) and dwell times (1.5, 2.0, and 2.5 h). The mineralogy, water adsorption, apparent porosity, bulk density, dielectric strength, flexural strength, and microstructure of the fired bodies were measured. The results revealed that, compared to DC, BC contains kaolinite as the major mineral with appreciable amounts of silica (46.72 wt.%), alumina (35.32 wt.%), and fluxing oxides but smaller amounts of CaO. BC contains greater clay fractions (20.58 wt.%); and has a middle-range plasticity index (PI = 11.2 wt.%), thus making BC suitable for producing porcelain insulators. A test-body composition of 40 wt.% BC, 40 wt.% feldspar, and 20 wt.% quartz, fired at 1250°C for 2 h, exhibited water adsorption of 0.17 wt.%, apparent porosity of 0.42 wt.%, bulk density of 2.45 g/cm3, a dielectric strength of 8.22 kV/mm, and flexural strength of 43.63 MPa and, thus, satisfied the required properties for quality porcelain insulators.

Original Paper
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Associate Editor: Prakash B. Malla


Aghayev, T., Küçükuysal, C. Ceramic properties of Uşak clay in comparison with Ukrainian clay Clay Minerals 2018 53 4 549562 10.1180/clm.2018.40CrossRefGoogle Scholar
Akwilapo, L. D., Wiik, K. Ceramic properties of Pugu kaolin clays. Part I: Porosity and modulus of rupture Bulletin of the Chemical Society of Ethiopia 2003 17 2 147154 10.4314/bcse.v17i2.61661Google Scholar
Al-Ani, T., Sarapää, O. Clay and clay mineralogy Geochemical Survey of Finland 2008 2008 194Google Scholar
Andreev, D. V., Zakharov, A. I. Ceramic item deformation during firing : Effect of composition and microstructure ( review ) Refractories and Industrial Ceramics 2009 50 4 298303 10.1007/s11148-009-9191-yCrossRefGoogle Scholar
ASTM C373-88 Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired Whiteware products ASTM C373-88 1999 88 reapproved 12Google Scholar
ASTM D422. (2007). Standard test method for particle-size analysis of soils. Astm, D422-63 (Reapproved), 1–8.Google Scholar
ASTM D4318-10 Standard test methods for liquid limit, plastic limit, and plasticity index of soils Report 2005 04 March 2010 114Google Scholar
ASTM D790-17 (2002). Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. D790. Annual Book of ASTM Standards. i: 112.Google Scholar
Ayele, L., Pérez-Pariente, J., Chebude, Y., Diaz, I. Synthesis of zeolite a using kaolin from Ethiopia and its application in detergents New Journal of Chemistry 2016 40 4 34403446 10.1039/c5nj03097hCrossRefGoogle Scholar
Baccour, H., Medhioub, M., Jamoussi, F., Mhiri, T. Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia Journal of Materials Processing Technology 2009 209 6 28122817 10.1016/j.jmatprotec.2008.06.055CrossRefGoogle Scholar
Bauluz, B., Mayayo, M. J., Fernández-Nieto, C., Cultrone, G., González López, J. M. Assessment of technological properties of calcareous and non-calcareous clays used for the brick-making industry of Zaragoza (Spain) Applied Clay Science 2003 24 1 121126 10.1016/S0169-1317(03)00152-2CrossRefGoogle Scholar
Belhouchet, K., Bayadi, A., Belhouchet, H., Romero, M. Improvement of mechanical and dielectric properties of porcelain insulators using economic raw materials Boletín de La Sociedad Española de Cerámica y Vidrio 2019 58 1 2837 10.1016/j.bsecv.2018.05.004CrossRefGoogle Scholar
Bennour, A., Mahmoudi, S., Srasra, E., Hatira, N., Boussen, S., Ouaja, M., Zargouni, F. Identification and traditional ceramic application of clays from the Chouamekh region in South-Eastern Tunisia Applied Clay Science 2015 118 212220 10.1016/j.clay.2015.09.018CrossRefGoogle Scholar
Bragança, S., Bergmann, C. Traditional and glass powder porcelain: Technical and microstructure analysis Journal of the European Ceramic Society 2004 24 23832388 10.1016/j.jeurceramsoc.2003.08.003CrossRefGoogle Scholar
Brindley, G., Nakahira, M. The kaolinite-mullite reaction series: II, Metakaolin Journal of the American Ceramic Society 2006 42 314318 10.1111/j.1151-2916.1959.tb14315.xCrossRefGoogle Scholar
Carty, W., Senapati, U. Porcelain—Raw materials, processing, phase evolution, and mechanical behavior Journal of the American Ceramic Society 1998 81 320 10.1111/j.1151-2916.1998.tb02290.xCrossRefGoogle Scholar
Çelik, H. Technological characterization and comparison of two ceramic clays used for manufacturing of traditional ceramic products in Turkey Scientific Mining Journal 2017 56 4 137147Google Scholar
Darweesh, H. H. M. (2019). Recycling of glass waste in ceramics — part I : physical , mechanical and thermal properties. SN Applied Sciences, 1(10), 111. Scholar
Fadaeeasrami, H., Faghihi, F., Olamaei, J., Mohammadnezhadshourkaei, H. FEM analysis of polluted 230 kV porcelain insulators by introducing new asymmetrical contamination: Elliptical ring-shaped International Journal of Electrical Power & Energy Systems 2022 142 108274 10.1016/j.ijepes.2022.108274CrossRefGoogle Scholar
Faria, K., Holanda, J. Incorporation of sugarcane bagasse ash waste as an alternative raw material for red ceramic Cerâmica 2013 59 473480 10.1590/S0366-69132013000300019CrossRefGoogle Scholar
Fentaw, H. M., Mengistu, T. Comparison of Kombelcha and Bombowha kaolins of Ethiopia 1998 Applied Clay Science 149164Google Scholar
Figueirêdo, J., Silva, J., Neves, G., Ferreira, H., Santana, L. Influence of processing variables on clay-based ceramic formulations Materials Research 2019 22 19 10.1590/1980-5373-MR-2018-0548CrossRefGoogle Scholar
Gaied, M. E., Gallala, W., Essefi, E., Montacer, M. Microstructural and mechanical properties in traditional ceramics as a function of Quartzofeldspathic sand incorporation Transactions of the Indian Ceramic Society 2011 70 4 207214 10.1080/0371750X.2011.10600170CrossRefGoogle Scholar
Gao, S., Liu, Y., Zhu, M. X., Tao, F. B., Zhou, Z. C., Bo, B., Huang, Y. J. Study on operating properties of ceramic long rod insulator for transmission line Materials Research Innovations 2015 19 January S570S575 10.1179/1432891715Z.0000000001327CrossRefGoogle Scholar
Ghorbel, A., Fourati, M., Bouaziz, J. Microstructural evolution and phase transformation of different sintered kaolins powder compacts Materials Chemistry and Physics 2008 112 3 876885 10.1016/j.matchemphys.2008.06.047CrossRefGoogle Scholar
Gliozzo, E., Iacoviello, F., Foresi, L. M. Geosources for ceramic production: The clays from the Neogene-quaternary Albegna Basin (southern Tuscany) Applied Clay Science 2014 91–92 105116 10.1016/j.clay.2014.01.012CrossRefGoogle Scholar
Gralik, G., Chinelatto, A. L., Chinelatto, ASA Effect of different sources of alumina on the microstructure and mechanical properties of the triaxial porcelain Ceramica 2014 60 356 471481 10.1590/S0366-69132014000400004CrossRefGoogle Scholar
Guggenheim, S., Martin, R. T., Alietti, A., Drits, V. A., Formoso, MLL, Galán, E., Köster, H. M., Morgan, D. J., Paquet, H., Watanabe, T., Bain, D. C., Ferrell, R. E., Bish, D. L., Fanning, D. S., Guggenheim, S., Kodama, H., Wicks, F. J. Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees Clays and Clay Minerals 1995 43 2 255256 10.1346/CCMN.1995.0430213CrossRefGoogle Scholar
Heide, K., & Földvari, M. (2006). High temperature mass spectrometric gas-release studies of kaolinite Al2[Si2O5(OH)4] decomposition. Thermochimica Acta, 446(1–2), 106112. Scholar
Holanda, K. C. P. F. J. N. F. (2012). Thermal study of clay ceramic pastes containing sugarcane bagasse ash waste. Journal of Thermal Analysis and Calorimetry, 1–6. Scholar
Holtz, R. D., Kovacs, W. D., Sheahan, T. C. An introduction to geotechnical engineering 2013 Dorling Kindersley India PvtGoogle Scholar
Hossain, SKS, Mathur, L., Roy, P. K., Hossain, SKS, Mathur, L., Rice, PKR Rice husk/rice husk ash as an alternative source of silica in ceramics: A review Journal of Asian Ceramic Societies 2018 6 4 299313 10.1080/21870764.2018.1539210CrossRefGoogle Scholar
Imagwuike, I. M., Nduka, N. B., Anthony, O. I., Chibundo, N. P. Development of standard formulations for porcelain production from Ohiya clay Kathmandu University Journal of Science, Engineering and Technology 2020 15 1 110Google Scholar
Iqbal, Y. On the glassy phase in tri-axial porcelain bodies Journal of Pakistan Materials Society 2008 2 2 6271Google Scholar
Iqbal, Y., Lee, W. E. Microstructural evolution in triaxial porcelain Journal of the American Ceramic Society 2000 83 12 31213127 10.1111/j.1151-2916.2000.tb01692.xCrossRefGoogle Scholar
Islam, R. A., Chan, Y. C., Islam, M. F. Structure-property relationship in high-tension ceramic insulator fired at high temperature Materials Science and Engineering B: Solid-State Materials for Advanced Technology 2004 106 2 132140 10.1016/j.mseb.2003.09.005CrossRefGoogle Scholar
Huber Corporation (1955). Kaolin clays and their industrial uses. J.M. Huber Corporation, Edison, New Jersey, USA.Google Scholar
Jara, A. D., Woldetinsae, G., Betemariam, A., Kim, J. Y. Mineralogical and petrographic analysis on the flake graphite ore from Saba Boru area in Ethiopia International Journal of Mining Science and Technology 2020 30 5 715721 10.1016/j.ijmst.2020.05.025CrossRefGoogle Scholar
Kaviraj, A. K., Saha, S., Chakraborty, A., Pahari, G., Ray, D., Parya, T. K., Das, S. K. Differences in phase, microstructural, and electrical characteristics of quartz-substituted alumina porcelain insulator Journal of the Australian Ceramic Society 2021 57 2 327337 10.1007/s41779-020-00535-4CrossRefGoogle Scholar
Kimambo, V. (2014). Suitability of Tanzanian kaolin, quartz and feldspar as raw materials for the production of porcelain tiles. International Journal of Science, Technology and Society, 2, 201. Scholar
Kitouni, S. Dielectric properties of Triaxial porcelain prepared using raw native materials without any additions Balkan Journal of Electrical and Computer Engineering 2014 2 3 128131Google Scholar
Kitouni, S., Harabi, A. Sintering and mechanical properties of porcelains prepared from Algerian raw materials Ceramica 2011 57 344 453460 10.1590/S0366-69132011000400013CrossRefGoogle Scholar
Krupa, P., Malinarič, S. Thermal properties of green alumina porcelain Ceramics International 2015 41 2 32543258 10.1016/j.ceramint.2014.11.015CrossRefGoogle Scholar
Kyasager, S. B., Prasanna, N. D. Development of optimum slip ratio for high voltage porcelain insulator manufacturing International Research Journal of Engineering and Technology 2016 03 02 522527Google Scholar
Lahcen, D., Hicham, E. E., Latifa, S., Abderrahmane, A., Jamal, B., Mohamed, W., Meriam, E., Nathalie, F. Characteristics and ceramic properties of clayey materials from Amezmiz region (Western high atlas, Morocco) Applied Clay Science 2014 102 139147 10.1016/j.clay.2014.09.029CrossRefGoogle Scholar
Laskar, A., Pal, S. K. Geotechnical characteristics of two different soils and their mixture and relationships between parameters Electronic Journal of Geotechnical Engineering 2012 17 U(2004) 28212832Google Scholar
Lee, W. E., Iqbal, Y. Influence of mixing on mullite formation in porcelain Journal of the European Ceramic Society 2001 21 25832586 10.1016/S0955-2219(01)00274-6CrossRefGoogle Scholar
Liebermann, J., Schulle, W. Bauxite porcelain: A new high-tech product for high-voltage insulation American Ceramic Society Bulletin 2002 81 3338Google Scholar
Locks, M., Arcaro, S., Bergmann, C. P., Ribeiro, MJPMJ, Raupp-Pereira, F., Montedo, ORK Effect of feldspar substitution by basalt on pyroplastic behaviour of porcelain tile composition Materials 2021 14 14 10.3390/ma14143990 10.3390/ma14143990CrossRefGoogle ScholarPubMed
Mahmoudi, S., Bennour, A., C, E., & Zargouni, F., Characterization, firing behavior and ceramic application of clays from the Gabes region in South Tunisia Applied Clay Science 2016 135 215225 10.1016/j.clay.2016.09.023CrossRefGoogle Scholar
Manfredini, T., Hanuskova, M. Natural raw materials in “traditional” ceramic manufacturing Journal of the University of Chemical Technology and Metallurgy 2012 47 4 465470Google Scholar
Manni, A., Elhaddar, A., El Bouari, A., El Hassani, E. A., Sadik, C. Complete characterization of Berrechid clays (Morocco) and manufacturing of new ceramic using minimal amounts of feldspars: Economic implication Case Studies in Construction Materials 2017 7 April 144153 10.1016/j.cscm.2017.07.001CrossRefGoogle Scholar
Martín-Márquez, J., De La Torre, A. G., Aranda, MAG, Rincón, J. M., Romero, M. Evolution with temperature of crystalline and amorphous phases in porcelain stoneware Journal of the American Ceramic Society 2009 92 1 229234 10.1111/j.1551-2916.2008.02862.xCrossRefGoogle Scholar
McManus, J. (1988). Grain size determination and interpretation. EurekaMag, 6385 Scholar
Mehta, N. S., Sahu, P. K., Tripathi, P., Pyare, R., Majhi, M. R. Influence of alumina and silica addition on the physico-mechanical and dielectric behavior of ceramic porcelain insulator at high sintering temperature Boletin de la Sociedad Espanola de Ceramica y Vidrio 2018 57 4 151159 10.1016/j.bsecv.2017.11.002CrossRefGoogle Scholar
Meng, Y., Gong, G., Wu, Z. P., Yin, Z. J., Xie, Y. M., Liu, S. R. Fabrication and microstructure investigation of ultra-high-strength porcelain insulator Journal of the European Ceramic Society 2012 32 30433049 10.1016/j.jeurceramsoc.2012.04.015CrossRefGoogle Scholar
Mercury, JMR, Cabral, A. A., Paiva, AEM, Angélica, R. S., Neves, R. F., Scheller, T. Thermal behavior and evolution of the mineral phases of Brazilian red mud Journal of Thermal Analysis and Calorimetry 2011 104 2 635643 10.1007/s10973-010-1039-7CrossRefGoogle Scholar
Merga, A., Murthy, H., Amare, E., Ahmed, K., & Bekele, E. (2019). Fabrication of electrical porcelain insulator from ceramic raw materials of Oromia region, Ethiopia. Heliyon, 5. ScholarPubMed
Moraes, JDD, Bertolino, SRA, Cuffini, S. L., Ducart, D. F., Bretzke, P. E., Leonardi, G. R. Clay minerals: Properties and applications to dermocosmetic products and perspectives of natural raw materials for therapeutic purposes—A review International Journal of Pharmaceutics 2017 534 1–2 213219 10.1016/j.ijpharm.2017.10.031CrossRefGoogle Scholar
Morkel, J., Vermaak, MKG The role of swelling clay in kimberlite weathering Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy 2006 115 3 150154 10.1179/174328506X109121Google Scholar
Ngayakamo, B., Eugene Park, S. Evaluation of kalalani vermiculite for production of high strength porcelain insulators Science of Sintering 2019 51 2 110 10.2298/SOS1902223NCrossRefGoogle Scholar
Ngayakamo, B., Park, S. E. Effect of firing temperature on triaxial electrical porcelain properties made from Tanzania locally sourced ceramic raw materials Epitoanyag - Journal of Silicate Based and Composite Materials 2018 70 4 106109 10.14382/epitoanyag-jsbcm.2018.19CrossRefGoogle Scholar
Ngayakamo, B., Park, S. E. Evaluation of Tanzania local ceramic raw materials for high voltage porcelain insulators production Ceramica 2018 64 570576 10.1590/0366-69132018643722427CrossRefGoogle Scholar
Nwachukwu, V. C., Lawal, S. A. Investigating the production quality of electrical porcelain insulators from local materials IOP Conference Series: Materials Science and Engineering 2018 413 19 10.1088/1757-899X/413/1/012076CrossRefGoogle Scholar
Ochen, W. Effect of quartz particle size on sintering behavior and flexural strength of porcelain tiles made from raw materials in Uganda Advances in Materials 2019 8 33 10.11648/ Scholar
Ologunwa, T., Akinbogun, T., Frischer, R., Kashim, I., Kuca, K., Krejcar, O., Fadeyi, O. Optimizing performance of porcelain insulators: How does particle size influence dielectric and mechanical strengths? Acta Mechanica Slovaca 2021 25 2 2028 10.21496/ams.2021.017CrossRefGoogle Scholar
Olupot, P. W., Jonsson, S., Byaruhanga, J. K. Development and characterisation of triaxial electrical porcelains from Ugandan ceramic minerals Ceramics International 2010 36 4 14551461 10.1016/j.ceramint.2010.02.006CrossRefGoogle Scholar
Regassa, A., Van Daele, K., De Paepe, P., Dumona, M., Deckers, J., Asrat, A., Van Ranst, E. Characterizing weathering intensity and trends of geological materials in the Gilgel gibe catchment, southwestern Ethiopia Journal of African Earth Sciences 2014 99 PA2 568580 10.1016/j.jafrearsci.2014.05.012CrossRefGoogle Scholar
Roy, S., Kumar Bhalla, S. Role of geotechnical properties of soil on civil engineering structures Resources and Environment 2017 7 4 103109Google Scholar
Salihu, S., Suleiman, I. Comparative analysis of physical and chemical characteristics of selected clays deposits found in Kebbi state. Nigeria International Journal of Physical Sciences 2018 13 10 163173Google Scholar
Sánchez-Soto, P. J., Eliche-Quesada, D., Martínez-Martínez, S., Garzón-Garzón, E., Pérez-Villarejo, L., Rincón, J. M. The effect of vitreous phase on mullite and mullite-based ceramic composites from kaolin wastes as by-products of mining, sericite clays and kaolinite Materials Letters 2018 223 154158 10.1016/j.matlet.2018.04.037CrossRefGoogle Scholar
Schettino, MAS, Siqueira, F. B., Holanda, JNF Densification behavior of floor tiles added with sugarcane bagasse ash waste Ciência & Tecnologia Dos Materiais 2016 28 1 6066 10.1016/j.ctmat.2015.10.004CrossRefGoogle Scholar
Souza, A. E., Teixeira, S. R., Santos, GTA, Costa, F. B., Longo, E. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials Journal of Environmental Management 2011 92 10 27742780 10.1016/j.jenvman.2011.06.020CrossRefGoogle ScholarPubMed
Tang, Q., Wang, F., Tang, M., Liang, J., & Ren, C. (2012). Study on pore distribution and formation rule of sepiolite mineral nanomaterials. Journal of Nanomaterials, 2012. Scholar
Teixeira, S. R., De Souza, A. E., De Almeida Santos, G. T., Peña, AFV, Miguel, ÁG Sugarcane bagasse ash as a potential quartz replacement in red ceramic Journal of the American Ceramic Society 2008 91 6 18831887 10.1111/j.1551-2916.2007.02212.xCrossRefGoogle Scholar
Trindade, M. J., Dias, M. I., Coroado, J., Rocha, F. Firing tests on clay-rich raw materials from the algarve basin (southern Portugal): Study of mineral transformations with temperature Clays and Clay Minerals 2010 58 2 188204 10.1346/CCMN.2010.0580205CrossRefGoogle Scholar
Tsozué, D., Nzeugang, A. N., Mache, J. R., Loweh, S., Fagel, N. Mineralogical, physico-chemical and technological characterization of clays from Maroua (far-north, Cameroon) for use in ceramic bricks production Journal of Building Engineering 2017 11 March 1724 10.1016/j.jobe.2017.03.008CrossRefGoogle Scholar
Valásková, M. Clays, clay minerals and cordierite ceramics – A review Ceramics Silikaty 2015 59 331340Google Scholar
Velde, B., & Meunier, A. (2008). The origin of clay minerals in soils and weathered rocks (Vol. Issue 1). In Springer Science & Business Media. Scholar
Yaya, A., Tiburu, E. K., Vickers, M. E., Efavi, J. K., Onwona-Agyeman, B., Knowles, K. M. Characterisation and identification of local kaolin clay from Ghana: A potential material for electroporcelain insulator fabrication Applied Clay Science 2017 150 125130 10.1016/j.clay.2017.09.015CrossRefGoogle Scholar
Zbik, M. S., Martens, W. N., Frost, R. L., Song, Y. F., Chen, Y. M., Chen, J., h., Smectite flocculation structure modified by Al13 macro-molecules - as revealed by transmission X-ray microscopy (TXM) Journal of Colloid and Interface Science 2010 345 1 3440 10.1016/j.jcis.2010.01.043CrossRefGoogle ScholarPubMed