Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T03:57:19.710Z Has data issue: false hasContentIssue false

Mineralogy, Geochemistry, and Origin of Bentonite in Upper Cretaceous Pyroclastic Units of the Tirebolu Area, Giresun, Northeast Turkey

Published online by Cambridge University Press:  01 January 2024

Mehmet Arslan*
Affiliation:
Department of Geological Engineering, Karadeniz Technical University, TR-61080 Trabzon, Turkey
Emel Abdiogğlu
Affiliation:
Department of Geological Engineering, Karadeniz Technical University, TR-61080 Trabzon, Turkey
Selahattin Kadir
Affiliation:
Department of Geological Engineering, Eskişehir Osmangazi University, TR-26480 Eskişehir, Turkey
*
* E-mail address of corresponding author: marslan@ktu.edu.tr

Abstract

Widespread alteration in the Upper Cretaceous pyroclastic units of the Tirebolu (Giresun) area, NE Turkey, has resulted in significant occurrences of bentonite with economic potential. No detailed geological, mineralogical, or geochemical characterization of these occurrences has been carried out to date. The aim of this study was to describe the geological background, the mineralogical, chemical, and stable-isotope characteristics of the bentonite, and major aspects of their formation, e.g. type and source of low-temperature alteration, mass balance, chemical evolution of the smectites, and geochemistry of major and trace elements. The bentonite contains abundant smectite with occasional kaolinite and mordenite, volcanogenic feldspar, quartz, biotite, hornblende, glass shards, and pumice fragments, along with the diagenetic minerals, opal-CT, and, in some locations, calcite. X-ray diffraction patterns of the clay fractions exhibit characteristics of pure montmorillonite and beidellite-type smectite. Micromorphologically, the smectite exhibits a honeycomb texture, the kaolinite occurs in both vermiform and irregular platy forms, and the mordenite occurs in fibrous form. All of these minerals are edged with devitrified volcanic glass and resorbed feldspar. Chemically, the smectites are Ca-smectite. Geochemical data indicate that alteration of the pyroclastic units took place under suboxic and anoxic environmental conditions during bentonite formation. Field observations and mineralogical, geochemical, oxygen, and hydrogen isotopic data indicate that the alteration of feldspar and volcanic glass in the pyroclastics by mixed meteoric and sea water in a shallow marine environment under alkaline and acidic conditions, respectively, controlled by environmental Al, Ca, and Na concentrations, resulted in the formation of authigenic smectite, mordenite, and kaolinite. A large Ca content in the smectite originated from surrounding units, which resulted in high alkalinity; Mg originated from seawater.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdioğlu, E., 2002 Mineralogical, geochemical and genetic investigation of Kavaklar (Ünye-Fatsa, Ordu) area clay occurrences MSc thesis Trabzon, Turkey Karadeniz Technical University, Graduate School of Natural and Applied Sciences.Google Scholar
Abdioğlu, E. and Arslan, M., 2005 Mineralogy, geochemistry and genesis of bentonites of the Ordu area, NE Turkey Clay Minerals 40 131151 10.1180/0009855054010161.CrossRefGoogle Scholar
Altaner, S.P. and Grim, R.E., 1990 Mineralogy, chemistry and diagenesis of tuffs in the Sucker Creek Formation (Miocene), Eastern Oregon Clays and Clay Minerals 38 561572 10.1346/CCMN.1990.0380601.CrossRefGoogle Scholar
Arslan, M. Kadir, S. Abdioğlu, E. and Kolaylı, H., 2006 Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey Clay Minerals 41 599619 10.1180/0009855064120208.CrossRefGoogle Scholar
Arslan, M. and Aslan, Z., 2006 Mineralogy, petrography and whole-rock geochemistry of the Tertiary granitic intrusions in the Eastern Pontides, Turkey Journal of Asian Earth Sciences 27 177193 10.1016/j.jseaes.2005.03.002.CrossRefGoogle Scholar
Arslan, M. Tüysüz, N. Korkmaz, S. and Kurt, H., 1997 Geochemistry and petrogenesis of the Eastern Pontide Volcanic Rocks, Northeast Turkey Chemie der Erde/Geochemistry 57 157187.Google Scholar
Arslan, M. Boztuğ, D. Şen, C. Kolaylı, H. Temizel, and Abdioğlu, E., 2007 Petrogenesis and geodynamic evolution of the southern zone Eocene volcanics, Eastern Pontides, NE Turkey (Turkish with English Abstract) .Google Scholar
Balderer, W., 1999 Application of Isotope Techniques in Hydrogeology .Google Scholar
Banfield, J.F. and Eggleton, R.A., 1989 Apatite replacement and rare earth mobility, fractionation, and fixation during weathering Clay Minerals 37 113127 10.1346/CCMN.1989.0370202.CrossRefGoogle Scholar
Bohor, B.F. and Triplehorn, D.M. (1993) Tonsteins: altered volcanic ash layers in coal-bearing sequences. Geological Society of America Special Paper, 285, 44 pp.Google Scholar
Buhmann, C. Fey, M.V. and Villiers, J.M., 1985 Aspects of X-ray identification of swelling clay minerals in soils and sediments South African Journal of Science 81 505509.Google Scholar
Brindley, G.W., Brindley, G.W. and Brown, G., 1980 Quantitative X-ray analysis of clays Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 411438.CrossRefGoogle Scholar
Caballero, E. Jimenez de Cisneros, C. Huertas, F.J. Huertas, F. Pozzuoli, A. and Linares, J., 2005 Bentonites from Cabo de Gata, Almeria Spain; a mineralogical and geochemical overview Clay Minerals 40 463480 10.1180/0009855054040184.CrossRefGoogle Scholar
Capuano, R.M., 1992 The temperature dependence of hydrogen isotope fractionation between clay minerals and water: evidence froma geopressured system Geochimica et Cosmochimica Acta 56 25472554 10.1016/0016-7037(92)90208-Z.CrossRefGoogle Scholar
Christidis, G.E., 1998 Comparative study of the mobility of major and trace elements during alteration of an andesite and a rhyolite to bentonite, in the islands of Milos and Kimolos, Aegean, Greece Clays and Clay Minerals 46 379399 10.1346/CCMN.1998.0460403.CrossRefGoogle Scholar
Christidis, G. and Dunham, A.C., 1997 Compositional variations in smectites. Part II: Alteration of acidic precursors, a case study from Milos Island, Greece Clay Minerals 32 253270 10.1180/claymin.1997.032.2.07.CrossRefGoogle Scholar
Christidis, G.E. and Huff, W.D., 2009 Geological aspects and genesis of bentonites Elements 5 9398 10.2113/gselements.5.2.93.CrossRefGoogle Scholar
Christidis, G. and Scott, P.W., 1997 The origin and control of colour of white bentonites fromt he Aegean islands of Milos and Kimolos, Greece Mineralium Deposita 32 271279 10.1007/s001260050092.CrossRefGoogle Scholar
Christidis, G. Scott, P.W. and Marcopoulast, T., 1995 Origin of the bentonite deposits of Eastern Milos and Kimalos, Greece: geological, mineralogical and geochemical evidence Clays and Clay Minerals 43 6377 10.1346/CCMN.1995.0430108.CrossRefGoogle Scholar
Churchman, G.J., 1990 Relevance of different intercalation tests for distinguishing halloysite from kaolinite in soils Clays and Clay Minerals 38 591599 10.1346/CCMN.1990.0380604.CrossRefGoogle Scholar
Churchman, G.J. and Gilkes, R.J., 1989 Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles Clay Minerals 24 579590 10.1180/claymin.1989.024.4.02.CrossRefGoogle Scholar
Clayton, R.N. and Mayeda, T., 1963 The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis Geochimica et Cosmochimica Acta 27 4752 10.1016/0016-7037(63)90071-1.CrossRefGoogle Scholar
Çoban, F. and Ece, I., 1999 Fe3+-rich montmorillonite-beidellite series in Ayvacık bentonite deposit, Biga Peninsula, Northwest Turkey Clays and Clay Minerals 47 165173 10.1346/CCMN.1999.0470206.CrossRefGoogle Scholar
Craig, H. Gordon, L.I., and Tongiorgi, E., 1965 Deuteriumand oxygen-18 variations in the ocean and the marine atmosphere Stable Isotopes in Oceanographic Studies and Paleotemperatures 9130.Google Scholar
Ddani, M. Meunier, A. Zahraoui, M. Beaufort, D. El Wartiti, M. Fontaine, C. Boukili, B. and El Mahi, B., 2005 Clay mineralogy and chemical composition of bentonites from the Gourougou volcanic massif, Northeast Morocco Clays and Clay Minerals 53 250267 10.1346/CCMN.2005.0530305.CrossRefGoogle Scholar
Dibble, J.R. and Tiller, W.A., 1981 Kinetic model of zeolite paragenesis in tuffaceous sediments Clays and Clay Minerals 29 323330 10.1346/CCMN.1981.0290502.CrossRefGoogle Scholar
Dixon, C.J. and Pereira, J., 1974 Plate tectonics and mineralization in the Tethyan Region Mineralium Deposita 9 185198 10.1007/BF00203995.CrossRefGoogle Scholar
Duddy, L.R., 1980 Redistribution and fractionation of rareearth and other elements in a weathering profile Chemical Geology 30 363381 10.1016/0009-2541(80)90102-3.CrossRefGoogle Scholar
Elliot, W.C., 1993 Origin of the Mg smectite at the Cretaceous/Tertiary (K/T) boundary at Stevns Klint, Denmark Clays and Clay Minerals 41 442452 10.1346/CCMN.1993.0410405.CrossRefGoogle Scholar
Elzea, J.M., 1990 Geology, geochemistry, selected physical properties and genesis of the Cretaceous Clay Spur bentonite in Wyoming and Montona, USA PhD thesis USA Indiana University.Google Scholar
Eslinger, E.V. and Yeh, H.W., 1986 Oxygen and hydrogen isotope geochemistry of Cretaceous bentonites and shales fromdi sturbed belt, Montana Geochimica et Cosmochimica Acta 50 5968 10.1016/0016-7037(86)90048-7.CrossRefGoogle Scholar
Faure, G. and Mensing, T.M., 2004 Isotopes: Principles and Applications 3rd edition New York John Wiley.Google Scholar
Fisher, R.V. and Schmicke, H.U., 1984 Pyroclastic Rocks New York Springer-Verlag 10.1007/978-3-642-74864-6.CrossRefGoogle Scholar
Gedik, , 2001 Microplates (terranes) of Turkey and their types and the importance of strike-slip-faults in building geological structures Fourth International Turkish Geology Symposium Abstracts, Adana, Turkey 186.Google Scholar
Gedik, , 2003 Türkiye jeolojisinin oluşumunda ‘terrane’ yapısının önemi 56thGeological Congress of Turkey Abstracts, Ankara, Turkey 281283.Google Scholar
Grim, R.E. and Güven, N., 1978 Bentonites, Geology, Mineralogy, Properties and Uses Amsterdam Elsevier 13137.Google Scholar
Gültekin, F., 1999 Gümüşhane ve Bayburt Yöresi Mineralli Su Kaynaklarının Hidrokimyası ve İzotopik Özellikleri PhD thesis Turkey Karadeniz Technical University.Google Scholar
Güven, N., 2009 Bentonites; clays for molecular engineering Elements 5 8992 10.2113/gselements.5.2.89.CrossRefGoogle Scholar
Harvey, C.C. and Lagaly, G., 2006 Conventional applications Handbook of Clay Science 1 499540 10.1016/S1572-4352(05)01015-9.Google Scholar
Hay, R.L. and Mumpton, F.A., 1977 Geology of zeolites in sedimentary rocks Mineralogy and Geology of Natural Zeolites Washington, D.C. Mineralogical Society of America 5364 10.1515/9781501508585-007.CrossRefGoogle Scholar
Hay, R.L. and Guldman, S.G., 1987 Diagenetic alteration of silisic ash in Searles lake, California Clays and Clay Minerals 35 449457 10.1346/CCMN.1987.0350605.CrossRefGoogle Scholar
Henderson, J.H. Jackson, M.L. Syers, J.K. Clayton, R.N. and Rex, R.W., 1971 Cristobalite authigenic origin in relation to montmorillonite and quartz origin in bentonite Clays and Clay Minerals 19 229238 10.1346/CCMN.1971.0190404.CrossRefGoogle Scholar
Hillier, S. and Velde, B., 1995 Erosion, sedimentation and sedimentary origin of clays Origin and Mineralogy of Clays New York Springer-Verlag 162219 10.1007/978-3-662-12648-6_4.CrossRefGoogle Scholar
Inoue, A. and Velde, B., 1995 Formation of clay minerals in hydrothermal environments Origin and Mineralogy of Clays, Clays and the Environment Berlin Springer-Verlag 268329 10.1007/978-3-662-12648-6_7.CrossRefGoogle Scholar
Jeans, C.V. Wray, D.S. Merriman, R.J. and Fisher, M.J., 2000 Volcanogenic clays in Jurassic and Cretaceous strata of England and the North Sea Basin Clay Minerals 35 2555 10.1180/000985500546710.CrossRefGoogle Scholar
Kadir, S. and Akbulut, A., 2009 Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey Clay Minerals 44 89112 10.1180/claymin.2009.044.1.89.CrossRefGoogle Scholar
Kadir, S. and Kart, F., 2009 The occurrence and origin of the Söğüt kaolinite deposits in the Paleozoic Saricakaya granite-granodiorite complexes and overlying Neogene sediments (Bilecik, Northwestern Turkey) Clays and Clay Minerals 57 311329 10.1346/CCMN.2009.0570304.CrossRefGoogle Scholar
Kamitani, M., 1978 Kaolinite, sericite and montmorillonite deposits in the Eastern Blacksea region Ankara, Turkey General Directorate of Mineral Research & Exploration.Google Scholar
Khoury, H.N. and Eberl, D.D., 1979 Bubble-wall shards altered to montmorillonite Clays and Clay Minerals 27 291292 10.1346/CCMN.1979.0270408.CrossRefGoogle Scholar
Kippli, T. Kippli, E. Kalleste, T. Hints, R. Somelar, P. and Kirsimae, K., 2007 Altered volcanic ash as an indicator of marine environment, reflecting pH and sedimentation rate; example from the Ordovician Kinnekulle Bed of Baltoscandia Clays and Clay Minerals 55 177188 10.1346/CCMN.2007.0550207.CrossRefGoogle Scholar
MacKenzie, R.C. and Mackenzie, R.C., 1957 Thermal methods Differential Thermal Investigation of Clays London Mineralogical Society 122.Google Scholar
MacLean, W.H. and Kranidiotis, P., 1987 Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposits, Matagami, Quebec Economic Geology 2 951962 10.2113/gsecongeo.82.4.951.CrossRefGoogle Scholar
Mariner, R.H. and Surdam, R.C., 1970 Alkalinity and formation of zeolites in saline, alkaline lakes Science 170 977980 10.1126/science.170.3961.977.CrossRefGoogle ScholarPubMed
Meunier, A. and Velde, B., 1995 Hydrothermal alteration by veins Origin and Mineralogy of Clays, Clays and the Environment Berlin Springer-Verlag 247267 10.1007/978-3-662-12648-6_6.CrossRefGoogle Scholar
Meunier, A., 2005 Clays Heidelberg Springer.Google Scholar
Moore, D.M. and Reynolds, R.C., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press.Google Scholar
Mottl, M.J. and Holland, H.D., 1978 Chemical exchange during hydrothermal alteration of basalt by seawater, I. Experimental results for major and minor components of seawater Geochimica et Cosmochimica Acta 42 11031115 10.1016/0016-7037(78)90107-2.CrossRefGoogle Scholar
Murray, H.H., 1991 Overview-clay mineral application Applied Clay Science 5 379395 10.1016/0169-1317(91)90014-Z.CrossRefGoogle Scholar
Murray, H.H., 1999 Applied clay mineralogy today andtomorrow Clay Minerals 34 3949 10.1180/000985599546055.CrossRefGoogle Scholar
Murray, H.H., 2007 Applied Clay Mineralogy, Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays USA Elsevier.Google Scholar
Ohmoto, H., Valley, J.W. Taylor, H.P. Jr. and O’Neil, editors, J.R., 986 Stable isotope geochemistry of ore deposits Stable Isotopes in High Temperature Geological Processes Washington, DC Mineralogical Society of America 491559.Google Scholar
Okay, A.I. Şahintürk, and Robinson, A.G., 1997 Geology of the Eastern Pontides Regional and Petroleum Geology of the Black Sea and Surrounding Region Tulsa, Oklahoma American Association of Petroleum Geology 291311.Google Scholar
O’Neil, J.R. and Taylor, H.P., 1967 The oxygen isotope and cation exchange chemistry of feldspars American Mineralogist 52 14141437.Google Scholar
Paterson, E. Swaffield, R. and Wilson, M.J., 1987 Thermal analysis A Handbook of Determinative Methods in Clay Mineralogy Glasgow, UK Blackie and Sons Limited 99132.Google Scholar
Rice, S.B. Papke, K.G. and Vaughan, D.E., 1992 Chemical controls on ferrierite crystallization during diagenesis of silicic pyroclastic rock near Lovelock, Nevada American Mineralogist 77 314328.Google Scholar
Righi, D. Meunier, A. and Velde, B., 1995 Origin of clays by rock weathering and soil formation Origin and Mineralogy of Clays Verlag, Berlin Springer 43157 10.1007/978-3-662-12648-6_3.CrossRefGoogle Scholar
Savin, S.M. and Epstein, S., 1970 The oxygen and hydrogen isotope geochemistry of clay minerals Geochimica et Cosmochimica Acta 34 2542 10.1016/0016-7037(70)90149-3.CrossRefGoogle Scholar
Savin, S.M. Lee, M. and Bailey, S.W., 1988 Isotopic studies of phyllosilicates Hydrous Phyllosilicates Washington DC Mineralogical Society of America 189223 10.1515/9781501508998-012.CrossRefGoogle Scholar
Savin, S.M. Douglas, R.G. and Stehli, F.G., 1975 Tertiary marine paleotemperatures Geological Society ofA merica Bulletin 86 14991510 10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Şen, C., 2007 Jurassic volcanismin the Eastern Pontides: Is it rift related or subduction related? Turkish Journal of Earth Sciences 16 523539.Google Scholar
Şen, C. Arslan, M. and Van, A., 1998 Geochemical and petrological characteristics of the Eastern Pontide Eocene (?) alkaline volcanic province, NE Turkey Turkish Journal ofEarth Sciences 7 231239.Google Scholar
Şengör, A.M.C. and Yılmaz, Y., 1981 Tethyan evolution of Turkey: a plate tectonic approach Tectonophysics 75 181241 10.1016/0040-1951(81)90275-4.CrossRefGoogle Scholar
Senkayi, A.L. Dixon, J.B. tHossner, L.R. Abder-Ruhman, M. and Fanning, D.S., 1984 Mineralogy and genetic relationships of tonstein, bentonite, and lignitic strata in the Eocene Yegua formation of East-Central Texas Clays and Clay Minerals 32 259271 10.1346/CCMN.1984.0320403.CrossRefGoogle Scholar
Seyfried, W.E. Jr. and Mottl, M.J., 1982 Hydrothermal alteration of basalt under seawater-dominated conditions Geochimica et Cosmochimica Acta 46 9851002 10.1016/0016-7037(82)90054-0.CrossRefGoogle Scholar
Shackleton, N.J. Kennett, J.P. et al. ,Kennett, J.P. and Houtz, R.E. 1975 et al. , Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281 Initial Reports of the Deep Sea Drilling Project Washington U.S. Government Printing Office 743755.Google Scholar
Sheppard, S.M.F. and Gilg, H.A., 1996 Stable isotope geochemistry of clay minerals Clay Minerals 31 124 10.1180/claymin.1996.031.1.01.CrossRefGoogle Scholar
Sheppard, R.A. and Gude, A.J., 1973 Zeolites and Associated Authigenic Silicate Minerals in Tuffaceous Rocks of the Big Sandy Formation, Mohave County, Arizona .CrossRefGoogle Scholar
Sheppard, S.M.F. Nielsen, R.L. and Taylor, H.P. Jr., 1969 Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits Economic Geology 64 755777 10.2113/gsecongeo.64.7.755.CrossRefGoogle Scholar
Shiraki, R. and Iijima, T., 1990 Na-K ion exchange reaction between rhyolitic glass and (Na,K)Cl aqueous solution under hydrothermal conditions Geochemica et Cosmochimica Acta 54 29232931 10.1016/0016-7037(90)90110-7.CrossRefGoogle Scholar
Shiraki, R. Sakai, H. Endo, M. and Kishima, N., 1987 Experimental studies on rhyolite- and andesite-seawater interactions at 300°C and 1000 bars Geochemical Journal 21 139148 10.2343/geochemj.21.139.CrossRefGoogle Scholar
Steefel, C.I. and Van Cappellen, P., 1990 A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors and Ostwald ripening Geochemica et Cosmochimica Acta 54 26572677 10.1016/0016-7037(90)90003-4.CrossRefGoogle Scholar
Sun, S.S. McDonough, W.F., Saunders, A.D. and Norry, M.J., 1989 Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes Magmatism in Ocean Basins London Geological Society 313345.Google Scholar
Surdam, R.C. and Mumpton, F.A., 1977 Zeolites in closed hydrologic systems Mineralogy and Geology of Natural Zeolites Washington, D.C. Mineralogical Society of America 6591 10.1515/9781501508585-008.CrossRefGoogle Scholar
Taylor, H.P. Jr. and Barnes, H.L., 1979 Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits Geochemistry of Hydrothermal Ore Deposits New York John Wiley 236277.Google Scholar
Taylor, S.R. and McLennan, S.M., 1985 The Continental Crust: Its Composition and Evolution Oxford, UK Blackwell.Google Scholar
Taylor, M.W. and Surdam, R.C., 1981 Zeolite reactions in the tuffaceous sediments at Teels Marsh, Nevada Clays and Clay Minerals 29 341352 10.1346/CCMN.1981.0290504.CrossRefGoogle Scholar
Temizel, and Arslan, M., 2008 Petrology and geochemistry of Tertiary volcanic rocks fromthe I. kizce (Ordu) area, NE Turkey: Implications for the evolution of the eastern Pontide paleo-magmatic arc Journal of Asian Earth Sciences 31 439463 10.1016/j.jseaes.2007.05.004.CrossRefGoogle Scholar
Uno, Y. and Takeshi, H., 1979 Exchange cations and structural formulae of montmorillonites in the Nakajo acid clay deposits, Nigata prefecture Journal oft he Mineralogical Society of Japan 14 90103 10.2465/gkk1952.14.Special1_90.Google Scholar
Uz, B. and Bacak, G., 2001 Mineralogical, physico-chemical and geological characteristics of the Kargalı bentonite deposits (Kocaeli - Turkey) 4thInternational Symposium on Eastern Mediterranean Geology Proceedings, Isparta, Turkey 307319.Google Scholar
Uz, B. Esenli, F. Özdamar, Esenli, V. and Suner, F., 2003 The comparison of ordering opal structure in two different bentonite occurrences Journal ofthe Geological Society ofIndia 62 478484.Google Scholar
Van Ranst, E., 1998 Analysis and Dynamics of Clays .Google Scholar
Wilson, M.J. and Wilson, M.J., 1987 X-ray powder diffraction methods A Handbook of Determinative Methods in Clay Mineralogy Glasgow, UK Blackie 2698.Google Scholar
Winchester, J.A. and Floyd, P.A., 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements Chemical Geology 20 245252 10.1016/0009-2541(77)90057-2.CrossRefGoogle Scholar
Yalçın, H. and Gümüşer, G., 2000 Mineralogical and geochemical characteristics of Late Cretaceous bentonite deposits of the Kelkit Valley Region, Northern Turkey Clay Minerals 35 807825 10.1180/000985500547250.CrossRefGoogle Scholar
Yeh, H.W., 1980 D/H ratios and late stage dehydration of shales during burial Geochemica et Cosmochimica Acta 44 341352 10.1016/0016-7037(80)90142-8.CrossRefGoogle Scholar
Yui, T. and Chang, S., 1999 Formation conditions of vesicle/fissure filling smectites in Penghu basalts: a stable-isotope assessment Clay Minerals 34 381393 10.1180/000985599546262.CrossRefGoogle Scholar
Zielinski, R.A., 1982 The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the troublesome formation, Colorado, USA Chemical Geology 35 185204 10.1016/0009-2541(82)90001-8.CrossRefGoogle Scholar