Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-30T02:17:14.303Z Has data issue: false hasContentIssue false

Mineralogy and Genesis of Smectites in an Alkaline-Saline Environment of Pantanal Wetland, Brazil

Published online by Cambridge University Press:  01 January 2024

Sheila Aparecida Correia Furquim*
Affiliation:
Laboratório de Pedologia, Departamento de Geografia, Universidade de São Paulo (USP), Av. Prof. Dr. Lineu Prestes, 338, 05508-900, São Paulo, Brazil
Robert C. Graham
Affiliation:
Soil & Water Sciences Program, Department of Environmental Sciences, University of California, Riverside, CA 92521-0424, USA
Laurent Barbiero*
Affiliation:
Laboratoire des Mécanismes de Transfert en Géologie, UMR 5563 CNRS-IRD-UPS-OMP, 14 Av. E. Belin, 31400, Toulouse, France
José Pereira de Queiroz Neto
Affiliation:
Laboratório de Pedologia, Departamento de Geografia, Universidade de São Paulo (USP), Av. Prof. Dr. Lineu Prestes, 338, 05508-900, São Paulo, Brazil
Vincent Vallès
Affiliation:
Laboratoire d’Hydrogéologie, Université d’Avignon et des Pays du Vaucluse, 74 Rue Louis Pasteur, 84029, Avignon, France
*
* E-mail address of corresponding author: sfurquim@usp.br
Current address: Université de Toulouse, UPS (SVT-OMP), LMTG, 14 Av, Edouard Belin, France

Abstract

Smectite formation in alkaline-saline environments has been attributed to direct precipitation from solution and/or transformation from precursor minerals, but these mechanisms are not universally agreed upon in the literature. The objective of this work was to investigate the mineralogy of smectites in the soils surrounding a representative alkaline-saline lake of Nhecolândia, a sub-region of the Pantanal wetland, Brazil, and then to identify the mechanisms of their formation.

Soils were sampled along a toposequence and analyzed by X-ray diffraction, transmission electron microscopy-energy dispersive X-ray analysis, and inductively coupled plasma-mass spectrometry. Water was collected along a transect involving the studied toposequence and equilibrium diagrams were calculated using the databases PHREEQC and AQUA.

The fine-clay fraction is dominated by smectite, mica, and kaolinite. Smectites are concentrated at two places in the toposequence: an upper zone, which includes the soil horizons rarely reached by the lake-level variation; and a lower zone, which includes the surface horizon within the area of seasonal lake-level variation. Within the upper zone, the smectite is dioctahedral, rich in Al and Fe, and is classified as ferribeidellite. This phase is interstratified with mica and vermiculite and has an Fe content similar to that of the mica identified. These characteristics suggest that the ferribeidellite originates from transformation of micas and that vermiculite is an intermediate phase in this transformation. Within the lower zone, smectites are dominantly trioctahedral, Mg-rich, and are saponitic and stevensitic minerals. In addition, samples enriched in these minerals have much smaller rare-earth element (REE) contents than other soil samples. The water chemistry shows a geochemical control of Mg and saturation with respect to Mg-smectites in the more saline waters. The REE contents, water chemistry, and the presence of Mg-smectite where maximum evaporation is expected, suggest that saponitic and stevensitic minerals originate by chemical precipitation from the water column of the alkaline-saline lake.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab’Saber, A.N., 1988 O Pantanal Mato-Grossense e a Teoria dos Refúgios Revista Brasileira de Geografia 50 957.Google Scholar
Akbulut, A. and Kadir, S., 2003 The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam Basin, Denizli, SW Turkey Clays and Clay Minerals 51 279292 10.1346/CCMN.2003.0510304.CrossRefGoogle Scholar
Alfonsi, R.R. and Camargo, M.B.P., 1986 Condições climáticas para a região do Pantanal Matogrossense Anais do 1° Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal Brazil Corumbá 105106.Google Scholar
Alvarenga, S.M., Brasil, A.E., Pinheiro, R., and Kux, H.J.H. (1984) Estudo Geomorfológico Aplicado à Bacia do Alto Rio Paraguai e Pantanais Matogrossenses. Boletim Técnico Projeto Radambrasil, 1, 187 pp.Google Scholar
Amaral Filho, Z.P., 1986 Solos do Pantanal Matogrossense Anais do 1° Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal Brazil Corumbá 91103.Google Scholar
Anderson, J.U., 1963 An improved pretreatment for mineralogical analysis of samples containing organic matter Clays and Clay Minerals 10 380388 10.1346/CCMN.1961.0100134.CrossRefGoogle Scholar
Aoki, S. and Kohyama, N., 1991 The vertical change in clay mineral composition and chemical characteristics of smectite in sediment cores from the southern part of the Central Pacific Basin Marine Geology 90 4149 10.1016/0025-3227(91)90034-2.CrossRefGoogle Scholar
Banfield, J.F. Jones, B.F. and Veblen, D.R., 1991 An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon: II. Diagenetic modification of the sedimentary assemblage Geochimica et Cosmochimica Acta 55 27952810 10.1016/0016-7037(91)90445-B.CrossRefGoogle Scholar
Badraoui, M. Bloom, P.R. and Rust, R.H., 1987 Occurrence of high-charge beidellite in a vertic Haplaquoll of north-western Minnesota Soil Science Society of America Journal 51 813818 10.2136/sssaj1987.03615995005100030044x.CrossRefGoogle Scholar
Barbiero, L. Furian, S. Queiroz Neto, J.P. Ciornei, G. Sakamoto, A.Y. Capellari, B. Fernandes, E. and Vallès, V., 2002 Geochemistry of water and ground water in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated processes Wetlands 22 528540 10.1672/0277-5212(2002)022[0528:GOWAGW]2.0.CO;2.CrossRefGoogle Scholar
Barbiero, L. Furquim, S.A.C. Vallès, V. Furian, S. Sakamoto, A. Rezende Filho, A. Fort, M., Bhattacharya, P. Mukherjee, A.B. Bundschuh, J. Zevenhoven, R. and Loeppert, R.H., 2007 Natural arsenic in groundwater and alkaline lakes at the Upper Paraguay Basin, Pantanal, Brazil Arsenic in Soil and Groundwater Environment: Biogeochemical Interactions, Health Effects and Remediation Amsterdam Elsevier 101126 10.1016/S0927-5215(06)09004-7.Google Scholar
Birsoy, R., 2002 Formation of sepiolite-palygorskite and related minerals from solution Clays and Clay Minerals 50 736745 10.1346/000986002762090263.CrossRefGoogle Scholar
Biscaye, P., 1965 Mineralogy and sedimentation of recent deep-seaclay in the Atlantic Ocean and adjacent seas and oceans Geological Society of America Bulletin 76 803832 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2.CrossRefGoogle Scholar
Borchardt, G., Dixon, J.B. and Weed, S.B., 1989 Smectites Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 675728.Google Scholar
Bowers, T.S. Jackson, K.J. and Helgeson, H.C., 1984 Equilibrium Activity Diagrams for Coexisting Minerals and Aqueous Solutions at Pressures and Temperatures to 5 kb and 600°C New York Springer-Verlag 397 pp.Google Scholar
Crawford, T.W. Whittig, L.D. Begg, E.L. and Huntington, G.L., 1983 Eolian influence on development and weathering of some soils of Point Reyes Peninsula, California Soil Science Society of America Journal 47 11791185 10.2136/sssaj1983.03615995004700060024x.CrossRefGoogle Scholar
Cuevas, J. De La Villa, V. Ramirez, S. Petit, S. Meunier, A. and Leguey, S., 2003 Chemistry of Mg smectites in lacustrine sediments from the Vicalvaro sepiolite deposit, Madrid Neogene Basin (Spain) Clays and Clay Minerals 51 457472 10.1346/CCMN.2003.0510413.CrossRefGoogle Scholar
Cunha, N.G., 1980 Considerações sobre os solos da sub-região da Nhecolândia, Pantanal Mato-Grossense Circular Técnica Embrapa 1 145.Google Scholar
Darragi, F. and Tardy, Y., 1987 Authigenic trioctahedral smectites controlling pH, alkalinity, silica and magnesium concentrations in alkaline lakes Chemical Geology 63 5972 10.1016/0009-2541(87)90074-X.CrossRefGoogle Scholar
Decarreau, A., 1980 Cristallogène expérimentale des smectites magnésiennes: hectorite, stévensite Bulletin de Minéralogie 103 579590.CrossRefGoogle Scholar
Del’Arco, J.O., Silva, R.H., Tarapanoff, I., Freire, F.A., Pereira, L.G.M., Souza, S.L., Luz, D.S., Palmeira, R.C.B., and Tassinari, C.C.G. (1982) Geologia da Folha SE.21-Corumbá e Parte da Folha SE.20. Pp. 25 a 160 in: RADAMBRASIL-Levantamento dos Recursos Naturais. Rio de Janeiro.Google Scholar
Douglas, L.A., Dixon, J.B. and Weed, S.B., 1989 Vermiculites Minerals in Soil Environments Madison, Wisonsin, USA Soil Science Society of America 635674.Google Scholar
Fanning, D.S. Vissarion, Z.K. El-Desoky, M.A., Dixon, J.B. and Weed, S.B., 1989 Micas Minerals in Soil Environments Madison, Wisconsin, USA Soil Science Society of America 551634.Google Scholar
Faust, G.T. and Murata, K.J., 1953 Stevensite, redefined as a member of the montmorillonite group American Mineralogist 38 973987.Google Scholar
Faust, G.T. Hathaway, J.C. and Millot, G., 1959 A restudy of stevensite and allied minerals American Mineralogist 44 342370.Google Scholar
Fernandes, E. Sakamoto, A.Y. Queiroz Neto, J.P. Lucati, H.M. and Capellari, B., 1999 Le ‘Pantanal da Nhecolândia’ Mato Grosso: Cadre Physique et Dynamique Hydrologique Geografia fisica e Dinamica Quaternaria 22 1321.Google Scholar
Fleet, A.J. and Henderson, P., 1984 Aqueous and sedimentary geochemistry of the rare earth elements Rare Earth Element Geochemistry Amsterdam Elsevier 343373 10.1016/B978-0-444-42148-7.50015-0.CrossRefGoogle Scholar
Foster, M.D., 1960 Interpretation of the composition of trioctahedral micas US Geological Survey Professional Paper 354B 1143.Google Scholar
Furquim, S.A.C. Graham, R.C. Queiroz Neto, J.P. Furian, S. and Barbiero, L., 2004 Fe-illite neoformation in an alkaline environment, Pantanal Wetland, Brazil Proceedings of the Soil Science Society of America Annual Meeting Washington, USA Seattle.Google Scholar
Gac, J.Y. Droubi, A. Fritz, B. and Tardy, Y., 1977 Geochemical behavior of silica and magnesium during the evaporation of waters in Chad Chemical Geology 19 215228 10.1016/0009-2541(77)90016-X.CrossRefGoogle Scholar
Garrels, R.M. and Christ, C.L., 1965 Solutions, Minerals, and Equilibria New York Harper and Row 450 pp.Google Scholar
Godoi Filho, J.D., 1986 Aspectos Geológicos do Pantanal Mato-grossense e de sua Área de Influência Anais do 1° Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal Brazil Corumbá 6376.Google Scholar
Gromet, L.P. Dymek, R.F. Haskin, L.A. and Korotev, R.L., 1984 The ‘North American shale composite’: its compilation, major and trace element characteristics Geochimica et Cosmochimica Acta 48 24692482 10.1016/0016-7037(84)90298-9.CrossRefGoogle Scholar
Gueddari, M., 1984 Géochimie et thermodynamique des évaporites continentales. Etude du lac Natron en Tanzanie et du Chott El Jerid en Tunisie Mémoire des Sciences Géologiques 76 1143.Google Scholar
Güven, N. and Bailey, S.W., 1988 Smectites Hydrous Phyllosilicates (exclusive of Micas) Washington, D.C Mineralogical Society of America 497559 10.1515/9781501508998-018.CrossRefGoogle Scholar
Hillier, S. and Velde, B., 1995 Erosion, sedimentation and sedimentary origin of clays Origin and Mineralogy of Clays. Clays and the Environment Berlin Springer 162219 10.1007/978-3-662-12648-6_4.CrossRefGoogle Scholar
Hover, V.C. Walter, L.M. Peacor, D.R. and Martini, A., 1999 Mg-smectite authigenesis in a marine evaporative environment, salina Ometepec, Baja California Clays and Clay Minerals 47 252268 10.1346/CCMN.1999.0470302.CrossRefGoogle Scholar
Ito, T., Komuro, K., Hatsuya, K., and Nishi, H. (2004) Chemical composition of ferromanganese micronodules in sediments at site 1216, ODP Leg 199, Paleogene equatorial transect. Pp 120 in: Proceedings of the Ocean Drilling Program. Scientific Results, 199 (on line publication at ).Google Scholar
Jackson, M.L., 1979 Soil Chemical Analysis — Advanced Course Madison, Wisconsin Published by the author 895 pp.Google Scholar
Jamoussi, F. Ben Aboud, A. and López Galindo, A., 2003 Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits Clay Minerals 38 187199 10.1180/0009855033820088.CrossRefGoogle Scholar
Jones, B.F. (1986) Clay mineral diagenesis in lacustrine sediments. Pp. 291300 in: Studies in Diagenesis (and Mumpton, F.A., editor). US Geological Survey Bulletin, 1578.Google Scholar
Kittrick, J.A., 1973 Mica-derived vermiculites as unstable intermediates Clays and Clay Minerals 21 479488 10.1346/CCMN.1973.0210608.CrossRefGoogle Scholar
Kodama, H. De Kimpe, C.R. and Dejou, J., 1988 Ferrian saponite in a gabbro saprolite at Mont Mégantic, Quebec Clays and Clay Minerals 36 102110 10.1346/CCMN.1988.0360202.CrossRefGoogle Scholar
Kohut, C.K. and Dudas, M.J., 1994 Characteristics of clay minerals in saline alkaline soils in Alberta, Canada Soil Science Society of America Journal 58 12601269 10.2136/sssaj1994.03615995005800040038x.CrossRefGoogle Scholar
López-Galindo, A. Ben Aboud, A. Fenoll Hach-Ali, P. and Casas Ruiz, J., 1996 Mineralogical and geochemical characterization of palygorskite from Gabasa (NE Spain). Evidence of a detrital precursor Clay Minerals 31 3344 10.1180/claymin.1996.031.1.03.CrossRefGoogle Scholar
Mayayo, M.J. Bauluz, B. and Gonzalez Lopez, J.M., 2000 Variations in the chemistry of smectites from the Calatayud Basin (NE Spain) Clay Minerals 35 365374 10.1180/000985500546837.CrossRefGoogle Scholar
McLennan, S.M., Lipin, B.R. and McKay, G.A., 1989 Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes Geochemistry and Mineralogy of Rare Earth Elements Washington, D.C Mineralogical Society of America 169200 10.1515/9781501509032-010.CrossRefGoogle Scholar
Moore, D. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 378 pp.Google Scholar
Parkhurst, D.L. (1995) Users Guide to PHREEQC — A Computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. US Geological Survey — Water-Resources Investigations Reports, 95-4227.Google Scholar
Por, F.D., 1995 The Pantanal of Mato Grosso (Brazil) - World’s Largest Wetland Dordrecht, The Netherlands Kluwer Academic Publishers 10.1007/978-94-011-0031-1 122 pp.CrossRefGoogle Scholar
Pozo, M. and Casas, J., 1999 Origin of kerolite and associated Mg clays in palustrine—lacustrine environments. The Esquivias deposit (Neogene Madrid Basin, Spain) Clay Minerals 34 395418 10.1180/000985599546316.CrossRefGoogle Scholar
Ransom, M.D. Bigham, J.M. Smeck, M.E. and Jaynes, W.F., 1988 Transitional vermiculite-smectite phases in Aqualfs in southwestern Ohio Soil Science Society of America Journal 52 873880 10.2136/sssaj1988.03615995005200030049x.CrossRefGoogle Scholar
Reid-Soukup, D.A. Ulery, A., Dixon, J.B. and Schulze, D.G., 2002 Smectites Soil Mineralogy with Environmental Applications Madison, Wisconsin Soil Science Society of America 467499.Google Scholar
Robert, M., 1973 The experimental transformation of mica toward smectite: relative importance of total charge and tetrahedral substitution Clays and Clay Minerals 21 167174 10.1346/CCMN.1973.0210305.CrossRefGoogle Scholar
Scatchard, G., 1936 Concentrated solutions of strong electrolytes Chemistry Review 19 309327 10.1021/cr60064a008.CrossRefGoogle Scholar
Scott, A.D. and Smith, S.J., 1968 Mechanism for soil potassium release by drying Soil Science Society of America Proceedings 32 443444 10.2136/sssaj1968.03615995003200030049x.CrossRefGoogle Scholar
Scott, D.A., Finlayson, C.M. and Moser, M.E., 1991 Latin America and Caribbean Wetlands: A Global Perspective New York Facts on File 85114.Google Scholar
Siffert, B. (1962) Quelques réactions de la silice en solution: la formation des argiles. Mémoires du Service de la Carte Géologique d’Alsace et de Lorraine, 21, 86 pp.Google Scholar
Silva, T.C., 1986 Contribuição da Geomorfologia para o Conhecimento e Valorização do Pantanal Anais do 1° Simpósio sobre Recursos Naturais e Sócio-Econômicos do Pantanal Brazil Corumbá 7790.Google Scholar
Sparovek, G. Van Lier, Q.J. and Dourado Neto, D., 2007 Computer-assisted Koeppen climate classification: A case study for Brazil International Journal of Climatology 27 257266 10.1002/joc.1384.CrossRefGoogle Scholar
Tettenhorst, R. and Moore, G.E. Jr., 1978 Stevensite oolites from the Green River formation of Central Utah Journal of Sedimentary Petrology 48 587594.Google Scholar
Theisen, A.A. and Harward, M.E., 1962 A paste method for preparation of slides for clay mineral identification by X-ray diffraction Soil Science Society of America Proceedings 26 9091.CrossRefGoogle Scholar
Torrez-Ruiz, J. López-Galindo, A. Gonzalez-López, J.M. and Delgado, A., 1994 Geochemistry of Spanish sepiolite-palygorskite deposits: genetic considerations based on trace elements and isotopes Chemical Geology 112 221245 10.1016/0009-2541(94)90026-4.CrossRefGoogle Scholar
Tricart, J., 1982 El Pantanal: Un ejemplo del impacto de la Geomorfología sobre el medio ambiente Geografia 7 3750.Google Scholar
Vallès, V. Ribolzi, O. de Cockborne, A.M. and Cornieles, M., 1996 Presentation de AQUA, logiciel de géochimie appliqué aux problèmes environnementaux Montpellier, France Gressap, ORSTOM.Google Scholar
Weaver, C.E. and Pollard, L.D., 1973 The Chemistry of Clay Minerals Amsterdam Elsevier 213 pp.Google Scholar
Wilde, P., 1996 The whole-rock Ce anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies Sedimentary Geology 101 4353 10.1016/0037-0738(95)00020-8.CrossRefGoogle Scholar