Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-13T17:46:13.600Z Has data issue: false hasContentIssue false

Measuring the Layer Charge of Dioctahedral Smectite by O—D Vibrational Spectroscopy

Published online by Cambridge University Press:  01 January 2024

Artur Kuligiewicz
Institute of Geological Sciences, Polish Academy of Sciences, ul. Senacka 1, 31-002, Krakow, Poland
Arkadiusz Derkowski*
Institute of Geological Sciences, Polish Academy of Sciences, ul. Senacka 1, 31-002, Krakow, Poland
Katja Emmerich
Competence Center for Material Moisture (CMM) and Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
George E. Christidis
School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece 73100
Constantinos Tsiantos
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave. Athens, Greece 11635
Vassilis Gionis
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave. Athens, Greece 11635
Georgios D. Chryssikos*
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave. Athens, Greece 11635
*E-mail address of corresponding author:
*E-mail address of corresponding author:


Layer charge (LC) is a fundamental property of smectite but its measurement remains challenging and tedious to apply on a high-throughput basis. The present study demonstrates that the position of a sharp, high-energy O—D stretching band of adsorbed D2O (νO—D, at ~2686–2700 cm−1), determined by infrared spectroscopy, correlates with LC and provides a simple method for its measurement. Twenty nine natural dioctahedral smectites and 14 reduced-charge montmorillonites with LC determined previously by different methodologies were saturated with D2O and examined by attenuated total reflectance infrared spectroscopy (ATR-IR). The samples included smectites in Mg, Ca, Na, Li, K, and Cs forms and covered the full range of the smectite LC (0.2 to 0.6 e per formula unit). Statistically significant correlations were found between νO—D and LC values determined with each of the two main methods of LC determination: the structural formula method (R2 = 0.96, σ = 0.02, ~0.2 < LC < 0.6) and the alkylammonium method (R2 = 0.92, σ = 0.01, 0.27 < LC < 0.37). These correlations were based on Li- and Na-saturated smectites, respectively, but other cationic forms can be employed provided that the exchangeable cations are of sufficiently high hydration enthalpy (e.g. Mg2+ or Ca2+, but not K+ or Cs+). The new method is fast, low-cost, implemented easily in laboratories equipped with ATR-FTIR, and applicable to samples as small as ~5 mg.

Copyright © The Clay Minerals Society 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Bishop, J.L. Pieters, C.M. and Edwards, J.O., 1994 Infrared spectroscopic analyses on the nature of water in montmorillonite Clays and Clay Minerals 42 702716.CrossRefGoogle Scholar
Bujdák, J., 2006 Effect of the layer charge of clay minerals on optical properties of organic dyes. A review Applied Clay Science 34 5873.CrossRefGoogle Scholar
Bujdák, J. Iyi, N. Kaneko, Y. Czímerová, A. and Sasai, R., 2003 Molecular arrangement of rhodamine 6G cations in the films of layered silicates: the effect of the layer charge Physical Chemistry Chemical Physics 5 46804685.CrossRefGoogle Scholar
Bujdák, J. Iyi, N. and Sasai, R., 2004 Spectral properties, formation of dye molecular aggregates, and reactions in rhodamine 6G/layered silicate dispersions Journal of Physical Chemistry B 108 44704477.CrossRefGoogle Scholar
Bukas, V.J. Tsampodimou, M. Gionis, V. and Chryssikos, G.D., 2013 Synchronous ATR infrared and NIR-spectroscopy investigation of sepiolite upon drying Vibrational Spectroscopy 68 5160.CrossRefGoogle Scholar
Christidis, G.E., 2001 Formation and growth of smectites in bentonites: a case study from Kimolos Island, Aegean, Greece Clays and Clay Minerals 49 204215.CrossRefGoogle Scholar
Christidis, G.E., 2006 Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocks — A case study from the Troodos Ophiolite Complex, Cyprus American Mineralogist 91 685701.CrossRefGoogle Scholar
Christidis, G.E., 2008 Validity of the structural formula method for layer charge determination of smectites: A reevaluation of published data Applied Clay Science 42 17.CrossRefGoogle Scholar
Christidis, G. and Dunham, A.C., 1993 Compositional variations in smectites derived from intermediate volcanic rocks. A case study from Milos Island, Greece Clay Minerals 28 255273.CrossRefGoogle Scholar
Christidis, G. and Dunham, A.C., 1997 Compositional variations in smectites. Part II: Alteration of acidic precursors, a case study from Milos Island, Greece Clay Minerals 32 253270.CrossRefGoogle Scholar
Christidis, G.E. and Eberl, D.D., 2003 Determination of layercharge characteristics of smectites Clays and Clay Minerals 51 644655.CrossRefGoogle Scholar
Christidis, G.E. and Huff, W.D., 2009 Geological aspects and genesis of bentonites Elements 5 9398.CrossRefGoogle Scholar
Christidis, G.E. Blum, A.E. and Eberl, D.D., 2006 Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites Applied Clay Science 34 125138.CrossRefGoogle Scholar
Cetin, K. and Huff, W.D., 1995 Layer charge of the expandable component of illite/smectite in K-bentonite as determined by alkylammonium ion exchange Clays and Clay Minerals 43 150158.CrossRefGoogle Scholar
Čícel, B. Komadel, P., Amonette, J.E. and Zelazny, L.W., 1994 Structural formulas of layer silicates Quantitative Methods in Soil Mineralogy Madison, Wisconsin, USA Soil Science Society of America.Google Scholar
Clay Minerals Society Nomenclature Committee (2015) The Clay Minerals Society Glossary for Clay Science, , access August 25, 2015.Google Scholar
Cuadros, J. and Dudek, T., 2006 FTIR investigation of the evolution of the octahedral sheet of kaolinite-smectite with progressive kaolinization Clays and Clay Minerals 54 111.CrossRefGoogle Scholar
Czímrerová, A. Bujdák, J. and Dohrmann, R., 2006 Traditional and novel methods for estimating the layer charge of smectites Applied Clay Science 34 213.CrossRefGoogle Scholar
Delavernhe, L. Steudel, A. Darbha, G.K. Schäfer, T. Schuhmann, R. Wöll, C. Geckeis, H. and Emmerich, K., 2015 Influence of mineralogical and morphological properties on the cation exchange behavior of dioctahedral smectites Colloids and Surfaces A: Physicochemical and Engineering Aspects 481 591599.CrossRefGoogle Scholar
Dohrmann, R., Kaufhold, S., Echle, W., and Meyer, F.M., 1999)(Beyond the methylene-blue test: introduction of the Cu(II)-triethylene-tetramine method for smectite estimation in bentonite. Euroclay Meeting, Krakow.Google Scholar
Dohrmann, R. Genske, D. Karnland, O. Kaufhold, S. Kiviranta, L. Olsson, S. Plötze, M. Sandén, T. Sellin, P. Svensson, D. and Valter, M., 2012 Interlaboratory CEC and exchangeable cation study of bentonite buffer materials: II. Alternative methods Clays and Clay Minerals 60 176185.CrossRefGoogle Scholar
Dudek, T. Cuadros, J. and Fiore, S., 2006 Interstratified kaolinite-smectite: Nature of the layers and mechanism of smectite kaolinization American Mineralogist 91 159170.CrossRefGoogle Scholar
Eberl, D.D., Środoń, J., and Northrop, H. R. (1986) Potassium fixation in smectite by wetting and drying. Pp 296326 in: Geochemical Processes at Mineral Surfaces (Davis, J.A. and Hayes, K.F., editors). American Chemical Society Symposium Series, 323.CrossRefGoogle Scholar
Farmer, V.C. and Russell, J.D., 1964 The infrared spectra of layer silicates Spectrochimica Acta 20 11491173.CrossRefGoogle Scholar
Farmer, V.C. Russell, J.D., Bailey, S.W., 1966 The infrared adsorption spectrometry in clay studies Proceedings of 15th National Conference Pittsburgh, Pennsylvania New York, USA Pergamon Press.Google Scholar
Farmer, V.C. and Russell, J.D., 1971 Interlayer complexes in layer silicates: The structure of water in lamellar ionic solutions Transactions of the Faraday Society 67 27372749.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties American Mineralogist 90 13581374.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. Geoffroy, N. Jacquot, E. and Drits, V.A., 2007 Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: Influence of layer charge and charge location American Mineralogist 92 17311743.CrossRefGoogle Scholar
Gates, W.P., Kloprogge, J.T., 2005 Infrared spectroscopy and the chemistry of dioctahedral smectites The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides Boulder, Colorado, USA The Clay Minerals Society.Google Scholar
Guggenheim, S. Adams, J.M. Bain, D.C. Bergaya, F. Brigatti, M.F. Drits, V.A. Formoso, M.L.L. Galán, E. Kogure, T. and Stanjek, H., 2006 Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association Internationale pour l’ Etude des Argiles (AIPEA) Nomenclature Committee for 2006 Clays and Clay Minerals 54 761772.CrossRefGoogle Scholar
Güven, N., Bailey, S.W., 1988 Smectites Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C., USA Mineralogical Society of America.Google Scholar
Harvey, C. Lagaly, G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Conventional applications Handbook of Clay Science Amsterdam Elsevier.Google Scholar
Jena, C.J. and Hore, D.K., 2010 Water structure at solid surfaces and its implications for biomolecule adsorption Physical Chemistry Chemical Physics 12 1438314404.CrossRefGoogle ScholarPubMed
Johnston, C.T., 2010 Probing the nanoscale architecture of clay minerals Clay Minerals 45 245279.CrossRefGoogle Scholar
Johnston, C.T. Sposito, G. and Erickson, C., 1992 Vibrational probe studies of water interactions with montmorillonite Clays and Clay Minerals 40 722730.CrossRefGoogle Scholar
Kaufhold, S., 2006 Comparison of methods for the determination of the layer charge density (LCD) of montmorillonites Applied Clay Science 34 1421.CrossRefGoogle Scholar
Kaufhold, S. and Dohrmann, R., 2013 The variable charge of dioctahedral smectites Journal of Colloid and Interface Science 390 225233.CrossRefGoogle ScholarPubMed
Kaufhold, S. Dohrmann, R. Ufer, K. and Meyer, F.M., 2002 Comparison of methods for the quantification of montmorillonite in bentonites Applied Clay Science 22 145151.CrossRefGoogle Scholar
Kaufhold, S. Dohrmann, R. Stucki, J.W. and Anastacio, A.S., 2011 Layer charge density of smectites — closing the gap between the structural formula method and the alkyl ammonium method Clays and Clay Minerals 59 200211.CrossRefGoogle Scholar
Kuligiewicz, A. Derkowski, A. Szczerba, M. Gionis, V. and Chryssikos, G.D., 2015 Revisiting the infrared spectrum of the water-smectite interface Clays and Clay Minerals 63 1529.CrossRefGoogle Scholar
Lagaly, G., 1981 Characterization of clays by organic compounds Clay Minerals 16 121.CrossRefGoogle Scholar
Lagaly, G., Mermut, A.R., 1994 Layer charge determination by alkylammonium ions Layer Charge Characteristics of 2:1 Silicate Clay Minerals Aurora, Colorado, USA The Clay Minerals Society.Google Scholar
Lagaly, G. Weiss, A., Heller, L. and Kaigi, N.G., 1969 Determination of the layer charge in mica-type layer silicates Proceedings of the International Clay Conference, Tokyo Jerusalem Israel University Press.Google Scholar
Laird, D.A., Mermut, A.R., 1994 Evalutation of structural formulae and alkylammonium methods of determining layer charge Layer Charge Characteristics of 2:1 Silicate Clay Minerals Aurora, Colorado, USA The Clay Minerals Society.Google Scholar
Laird, D.A., 1999 Layer charge influences on the hydration of expandable 2:1 phyllosilicates Clays and Clay Minerals 47 630636.CrossRefGoogle Scholar
Laird, D.A., 2006 Influence of layer charge on swelling of smectites Applied Clay Science 34 7487.CrossRefGoogle Scholar
Laird, D.A. Scott, A.D. and Fenton, T.E., 1989 Evaluation of the alkylammonium method of determining layer charge Clays and Clay Minerals 37 4146.CrossRefGoogle Scholar
Madejová, J., 2003 FTIR techniques in clay mineral studies Vibrational Spectroscopy 31 110.CrossRefGoogle Scholar
Madejová, J. Janek, M. Komadel, P. Herbert, H.-J. and Moog, H.C., 2002 FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems Applied Clay Science 20 255271.CrossRefGoogle Scholar
Mermut, A.R., Mermut, A.R., 1994 Problems associated with layer charge characterization of 2:1 phyllosilicates Layer Charge Characteristics of 2:1 Silicate Clay Minerals Aurora, Colorado, USA The Clay Minerals Society.Google Scholar
Odom, I.E., 1984 Smectite clay minerals: properties and uses Philosophical Transactions of The Royal Society A 311 391409.Google Scholar
Onodera, Y. Iwasaki, T. Ebina, T. Hayashi, H. Torii, K. Chatterjee, A. and Mumura, H., 1998 Effect of layer charge on fixation of cesium ions in smectites Journal of Contaminant Hydrology 35 131140.CrossRefGoogle Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., 1990 The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950.CrossRefGoogle Scholar
Pentrák, M. Czímrerová, A. Madejová, J. and Komadel, P., 2012 Changes in layer charge of clay minerals upon acid treatment as obtained from their interactions with methylene blue Applied Clay Science 55 100107.CrossRefGoogle Scholar
Petit, S. Righi, D. Madejová, J. and Decarreau, A., 1998 Layer charge estimation of smectites using infrared spectroscopy Clay Minerals 33 579591.CrossRefGoogle Scholar
Petit, S. Righi, D. and Madejová, J., 2006 Infrared spectroscopy of NH4+-bearing and saturated clay minerals: A review of the study of layer charge Applied Clay Science 34 2230.CrossRefGoogle Scholar
Ruehlicke, G. and Kohler, E.E., 1981 A simplified procedure for determining layer charge by the n-alkylammonium method Clay Minerals 16 305307.CrossRefGoogle Scholar
Russell, J.D. Farmer, V.C. and Velde, B., 1970 Replacement of OH by OD in layer silicates, and identification of vibrations of these groups in infra-red spectra Mineralogical Magazine 37 869879.CrossRefGoogle Scholar
Scatena, L.F. Brown, M.G. and Richmond, G.L., 2001 Water at hydrophobic surfaces: Weak hydrogen bonding and strong orientation effects Science 292 908912.CrossRefGoogle Scholar
Schoonheydt, R. Johnston, C., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Surface and interface chemistry of clay minerals Handbook of Clay Science Amsterdam Elsevier.Google Scholar
Skiba, M., 2013 Evolution of dioctahedral vermiculite in geological environments — an experimental approach Clays and Clay Minerals 61 290302.CrossRefGoogle Scholar
Skoubris, E.N. Chryssikos, G.D. Christidis, G.E. and Gionis, V., 2013 Structural characterization of reduced-charge montmorillonites. Evidence based on FTIR spectroscopy, thermal behavior, and layer-charge systematics Clays and Clay Minerals 61 8397.CrossRefGoogle Scholar
Sovago, M. Kramer Campen, R.K. Bakker, H.J. and Bonn, M., 2009 Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation Chemical Physics Letters 470 712.CrossRefGoogle Scholar
Sposito, G. Prost, R. and Gaultier, J.P., 1983 Infrared spectroscopic study of adsorbed water on reduced-charge Na-Li-montmorillonites Clays and Clay Minerals 31 916.CrossRefGoogle Scholar
Środoń, J. Zeelmaekers, E. and Derkowski, A., 2009 The charge of component layers of illite-smectite in bentonites and the nature of end-member illite Clays and Clay Minerals 57 649671.CrossRefGoogle Scholar
Stevens, R.E., 1946 A system for calculating analyses of micas and related minerals to end members U.S. Geological Survey Bulletin 950 101119.Google Scholar
Suquet, H. Prost, R. and Pezerat, H., 1977 Water adsorbed by calcium saponite — IR spectroscopy Clay Minerals 12 113126.CrossRefGoogle Scholar
Tertre, E. Delville, A. Pret, D. Hubert, F. and Ferrage, E., 2015 Cation diffusion in the interlayer space of swelling clay minerals — A combined macroscopic and microscopic study Geochimica et Cosmochimica Acta 149 251267.CrossRefGoogle Scholar
Tian, C.S. and Shen, Y.R., 2009 Sum-frequency vibrational spectroscopic studies of water/vapor interfaces Chemical Physics Letters 470 16.CrossRefGoogle Scholar
Wolters, F. Lagaly, G. Kahr, G. Nueesch, R. and Emmerich, K., 2009 A comprehensive characterization of dioctahedral smectites Clays and Clay Minerals 57 115133.CrossRefGoogle Scholar
Xu, W.Z. Johnston, C.T. Parker, P. and Agnew, S.F., 2000 Infrared study of water sorption on Na-, Li-, Ca-, and Mgexchanged (SWy-1 and SAz-1) montmorillonite Clays and Clay Minerals 48 120131.CrossRefGoogle Scholar
Zviagina, B.B. McCarty, D. Środoń, J. and Drits, V.A., 2004 Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations Clays and Clay Minerals 52 399410.CrossRefGoogle Scholar