Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T15:16:16.087Z Has data issue: false hasContentIssue false

Heats of Adsorption of N-Hexane by Thermal Gravimetry with Differential Scanning Calorimetry (Tg-DSC): A Tool for Textural Characterization of Pillared Clays

Published online by Cambridge University Press:  28 February 2024

J. Pires*
Affiliation:
Departamento de Química e Bioquímica da Faculdade de Ciências de Lisboa, R. Ernesto Vasconcelos, Ed. C1, 5° piso, 1749-016 Lisboa, Portugal
M. Brotas de Cavalho
Affiliation:
Departamento de Química e Bioquímica da Faculdade de Ciências de Lisboa, R. Ernesto Vasconcelos, Ed. C1, 5° piso, 1749-016 Lisboa, Portugal
A. P. Carvalho
Affiliation:
Departamento de Química e Bioquímica da Faculdade de Ciências de Lisboa, R. Ernesto Vasconcelos, Ed. C1, 5° piso, 1749-016 Lisboa, Portugal
J. M. Guil
Affiliation:
Instituto de Química Física “Rocasolano”, CSIC, Serrano 119, 28006 - Madrid, Spain
J. A. Perdigón-Melón
Affiliation:
Instituto de Química Física “Rocasolano”, CSIC, Serrano 119, 28006 - Madrid, Spain
*
E-mail of corresponding author: jpiresil@fc.ul.pt

Abstract

Microporous materials, (materials with pore sizes with widths <2 nm) were prepared by pillaring of smectites obtained from different soil deposits. The materials were prepared by intercalation with oligomeric cations of aluminum, which were transformed to aluminum-oxide pillars by calcination. The adsorption of n-hexane in the pillared clays was studied by the determination of heats of adsorption. Heats of adsorption were measured using either a static microcalorimeter or differential scanning calorim-etry coupled with thermogravimetry (TG-DSC). In this latter case, two different procedures were used that differ on the introduction of the (n-hexane) molecules that are to be adsorbed. The results obtained by the (standard) static microcalorimeter method and the TG-DSC method were compared. This comparison showed the heats of adsorption obtained by TG-DSC are differential heats of adsorption, and it showed the range of adsorption. Characterizing the texture of pillared clays, especially microporosity, is important for monitoring the intercalation process and for determining potential applications of these materials. Correlations between the obtained heats of adsorption and the dimensions of micropores suggest that TG-DSC is a semi-quantitative method for characterizing micropores in aluminum-pillared clays.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagshaw, S.A. and Cooney, R.P., 1993 FTIR surface site analysis of pillared clays using pyridine probe species Chemistry of Materials 5 11011109 10.1021/cm00032a013.CrossRefGoogle Scholar
Bahranowski, K. Gasior, M. Kielski, A. Podobinski, J. Ser-wicka, E.M. Vartikian, L.A. and Wodnicka, K., 1998 Physico-chemical characterization and catalytic properties of copper-doped alumina-pillared montmorillonites Clays and Clay Minerals 46 98102 10.1346/CCMN.1998.0460111.CrossRefGoogle Scholar
Baksh, M.S. Kikkinides, E.S. and Yang, R.T., 1992 Characterization by physisorption of a new class of microporous adsorbents: Pillared clays Industrial & Engineering Chemical Research 31 21812189 10.1021/ie00009a016.CrossRefGoogle Scholar
Barrault, J. Bouchoule, C. Echachoui, K. Frini-Srasra, N. Trabelsi, M. and Bergaya, F., 1998 Catalytic wet peroxide oxidation (CWPO) of phenol over mixed (Al-Cu)-pillared clay Applied Catalysis B: Environmental 15 269274 10.1016/S0926-3373(97)00054-4.CrossRefGoogle Scholar
Breck, D.W., 1974 Zeolite Chemistry and Catalysis Washington D.C. American Chemical Society.Google Scholar
Carvalho, M.B. Pires, J. and Carvalho, A.P., 1996 Characterization of clays and aluminum pillared clays by adsorption of probe molecules Microporous Materials 61 6577 10.1016/0927-6513(95)00089-5.CrossRefGoogle Scholar
Cheng, L.S. and Yang, R.T., 1995 A new class of non-zeo-litic sorbents for air separation: Lithium ion exchanged pillared clays Industrial & Engineering Chemical Research 34 20212028 10.1021/ie00045a011.CrossRefGoogle Scholar
Clearfield, A. and Moser, W.R., 1996 Preparation of pillared clays and their catalytic properties Advanced Catalysts and Nanostruc-tured Materials London Academic Press 345393 10.1016/B978-012508460-4/50016-4.CrossRefGoogle Scholar
Corma, A., 1997 From microporous to mesoporous molecular sieve materials and their use in catalysis Chemistry Reviews 97 23732419 10.1021/cr960406n.CrossRefGoogle ScholarPubMed
Corma, A. Corell, C. Pérez-Pariente, J. Guil, J.M. Guil-Lopéz, R. Nicolopoulos, S. Calbet, J.G. and Vallet-Regi, M., 1996 Adsorption and catalytic properties of MCM-22: The influence of zeolite structure Zeolites 16 714 10.1016/0144-2449(95)00084-4.CrossRefGoogle Scholar
Guil, J.M. Guil-López, R. Perdigón-Melón, J.A. and Corma, A., 1998 Determining the topology of zeolites by adsorption microcalorimetry of organic molecules Microporous and Mesoporous Materials 22 269279 10.1016/S1387-1811(98)00104-8.CrossRefGoogle Scholar
Guil, J.M. Masiá, A.P. Paniego, A.R. and Menayo, J.M.T., 1998 Energetics of H2 and O2 adsorption on Ir/“gam-ma”-Al2O3 and Ir/SiO2 catalysts. Dependence on support and on metal particle size Thermochimica Acta 912 115 10.1016/S0040-6031(97)00445-0.CrossRefGoogle Scholar
Jänchen, J. Stavh, H. Grobert, P.J. Martens, J.A. and Jacobs, R.A., 1992 Calorimetrie studies of the adsorption thermodynamic properties of the very large molecular sieve VPI-5 Zeolites 12 912 10.1016/0144-2449(92)90002-7.CrossRefGoogle Scholar
Jeffery, G.H. Bassett, J. Mendham, J. and Denney, R.C., 1989 Vogel’s Textbook of Quantitative Chemical Analysis 5 New York Longman Scientific & Technical 309328.Google Scholar
Li, W. Sirilumpen, M. and Yang, R.T., 1997 Selective catalytic reduction of nitric oxide by ethylene in the presence of oxygen over Cu2+ ion-exchanged pillared clays Applied Catalysis B: Environmental 11 347363 10.1016/S0926-3373(96)00056-2.CrossRefGoogle Scholar
Malia, P.B. and Komarneni, S., 1990 Synthesis of highly microporous hydrophilic alumina-pillared montmorillonite: Water-sorption properties Clays and Clay Minerals 38 363372 10.1346/CCMN.1990.0380405.CrossRefGoogle Scholar
McMullen, S.B. Reischman, P.T. and Olson, D.H., 1993 Hexane and benzene adsorption by aluminophosphates and SSZ-24: The effect of pore size and molecular sieve composition Zeolites 13 640644 10.1016/0144-2449(93)90136-Q.CrossRefGoogle Scholar
Meier, W.M. and Olson, D.H., 1992 Atlas of zeolites structure types Zeolites 12 8889 10.1016/0144-2449(92)90022-H.Google Scholar
Michot, L.J. Villiéras, E. Lambert, J.-E. Bergaoui, L. Grillet, Y. and Robert, J.L., 1998 Surface heterogeneity in micropores of pillared clays: The limits of classical pore-filling mechanisms Journal of Physical Chemistry 102 34663476 10.1021/jp980110g.CrossRefGoogle Scholar
Molina, R. Schutz, A. and Poncelet, G., 1994 Transformation of m-xylene over Al-pillared clays and ultrastable zeolite Y Journal of Catalysis 145 7985 10.1006/jcat.1994.1010.CrossRefGoogle Scholar
Molinard, A. Vansant, E.E. and Vansant, E.E., 1994 Gas adsorption properties of cation modified alumina pillared montmorillonite Separation Technology Amsterdam Elsevier 423436.Google Scholar
Newsam, J.M. Tracy, M.M.J. Vaughan, D.E.W. Strohmaier, K.G. and Mortier, W.J., 1989 The structure of zeolite ZSM-20: Mixed cubic and hexagnoal stackings of faujasite sheets Journal of the Chemical Society, Chemical Communications 8 493495 10.1039/c39890000493.CrossRefGoogle Scholar
Occelli, M.L. Huggins, F.E. Dominguez, J.M. Stencel, J.M. and Gould, S.A.C., 1995 Characterisation of iron impurities in pillared rectorite catalysts Microporous Materials 4 291300 10.1016/0927-6513(95)00015-2.CrossRefGoogle Scholar
Perathoner, S. and Vaccari, A., 1997 Catalysts based on pillared interlayered clays for the selective catalytic reduction of NO Clay Minerals 32 123134 10.1180/claymin.1997.032.1.13.CrossRefGoogle Scholar
Pereira, P.R. Pires, J. and Carvalho, M.B., 1998 Zirconium pillared clays for carbon dioxide/methane Separation. 1. Preparation of adsorbent materials and pure gas adsorption Langmuir 14 45844588 10.1021/la980209e.CrossRefGoogle Scholar
Pinnavaia, T.J., 1983 Intercalated clay catalysts Science 220 365371 10.1126/science.220.4595.365.CrossRefGoogle ScholarPubMed
Pires, J. and Carvalho, M., 1997 Water adsorption in aluminium pillared clays and zeolites Journal of Materials Chemistry 7 19011904 10.1039/a701974b.CrossRefGoogle Scholar
Pires, J. Carvalho, M. Ribeiro, F. and Derouane, E., 1989 Heats of adsorption and mass transfer coefficients of al-kanes in zeolites Y and ZSM-20 Applied Catalysis 3 273277 10.1016/S0166-9834(00)80026-3.CrossRefGoogle Scholar
Pires, J. Carvalho, M. Ribeiro, F. Derouane, E., Rodrigues, A. Le Van, D. and Tondeur, D., 1989 Adsorption of n-hexane and 3-methylpentane on zeolites Y and ZSM-20 Adsorption Science and Technology Dordrecht Kluwer Academic Publishers 7984 10.1007/978-94-009-2263-1_6.CrossRefGoogle Scholar
Reid, R.C. Prausnitz, J.M. and Sherwood, T.K., 1977 The Properties of Gases and Liquids 3 New York McGraw-Hill Book Company 648650.Google Scholar
Savitz, S. Siperstein, F. Gorte, R.J. and Myers, A.L., 1998 Calorimetric study of adsorption of alkanes in high-silica zeolites Journal of Physical Chemistry B 102 68656872 10.1021/jp981836f.CrossRefGoogle Scholar
Sing, K.S.W. Everett, D.H. Haul, R.A.W. Moscou, L. Pier-otti, R.A. Rouquérol, J. and Siemieniewska, T., 1985 Reporting physisorption data for the gas/solid systems with special reference to the determination of surface area and porosity Pure & Applied Chemistry 57 603619 10.1351/pac198557040603.CrossRefGoogle Scholar
Sun, Y. Chu, P.-J. and Lunsford, J., 1991 The strong acidity in H-ZSM20 zeolites Langmuir 7 30273033 10.1021/la00060a020.CrossRefGoogle Scholar
Szostak, R. Ingram, C., Beyer, H.K. Karge, H.G. Kiricsi, I. and Nagy, J.B., 1995 Pillared layered structures (PLS): From microporous to nano-phase materials Catalysis by Microporous Materials. Studies in Surface Science and Catalysis, Volume 95 Amsterdam Elsevier 1338.Google Scholar
Thorez, J., 1975 Phyllosilicates and Clay Minerals—A Laboratory Handbook for Their X-Ray Diffraction Analysis Dison G. Lellote.Google Scholar
Vaughan, D.E.W. and Burch, R., 1988 Pillared clays, a historical perspective Pillared Clays: Catalysis Today Amsterdam Elsevier 187198.Google Scholar
Weaver, C.E. and Pollard, L.D., 1975 The Chemistry of Clay Minerals Amsterdam Elsevier 5586.Google Scholar
Zhu, H.-Y. and Vansant, E.F., 1995 Determination of porosity in pillared clays by N2 adsorption isotherms Journal of Porous Materials 2 107113 10.1007/BF00486577.CrossRefGoogle Scholar