Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-18T16:07:46.432Z Has data issue: false hasContentIssue false

Cadmium(II) Complexes Adsorbed on Clay Edge Surfaces: Insight from First Principles Molecular Dynamics Simulation

Published online by Cambridge University Press:  01 January 2024

Chi Zhang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
Xiandong Liu*
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
Xiancai Lu
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
Evert Jan Meijer
Affiliation:
Van’t Hoff Institute for Molecular Sciences and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
Kai Wang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
Mengjia He
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
Rucheng Wang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, P.R. China
*
*E-mail address of corresponding author: xiandongliu@nju.edu.cn

Abstract

Aiming to identify the complexing mechanisms of heavy metal cations on edge surfaces of 2:1-type clay minerals, systemic first-principles molecular dynamics (FPMD) simulations were conducted and the microscopic structures and complex free energies were obtained. Taking Cd(II) as a model cation, the structures on both (010) and (110) edges of the complexes were derived for the three possible binding sites (≡SiO, ≡Al(OH)2/≡AlOH≡AlSiO, and vacant sites). The stable complexes adsorbed on the three binding sites on both terminations had similar structures. The free energies of the complexes on (010) edges were calculated by using the constrained FPMD method. The free energies of complexes on the ≡SiO and ≡Al(OH)2 sites were similar and they were both significantly lower than the free energy of the complex on the octahedral vacant site. In association with the concept of high energy site (HES) and low energy site (LES) in the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model, the vacant site was assigned to HES and the other two sites to LES, respectively.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is published as part of a special issue on the subject of ‘Computational Molecular Modeling’. Some of the papers were presented during the 2015 Clay Minerals Society-Euroclay Conference held in Edinburgh, UK.

References

Alexandrov, V. and Rosso, K.M., 2013 Insights into the mechanism of Fe(II) adsorption and oxidation at Fe-clay mineral surfaces from first-principles calculations Journal of Physical Chemistry C 117 2288022886.CrossRefGoogle Scholar
Anderson, R.L. Ratcliffe, I. Greenwell, H.C. Williams, P.A. Cliffe, S. and Coveney, P.V., 2010 Clay swelling — a challenge in the oilfield Earth-Science Reviews 98 201216.CrossRefGoogle Scholar
Baeyens, B. and Bradbury, M.H., 1997 A mechanistic description of Ni and Zn sorption on Na-montmorillonite. 1. Titration and sorption measurements Journal of Contaminant Hydrology 27 199222.CrossRefGoogle Scholar
Barbier, F. Duc, G. and Petit-Ramel, M., 2000 Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface Colloids and Surfaces A: Physicochemical and Engineering Aspects 166 153159.CrossRefGoogle Scholar
Bergaya, F. and Lagaly, G., 2013 General introduction: Clays, clay minerals, and clay science. Ch. 1 Handbook of Clay Science 5A 119.Google Scholar
Bickmore, B.R. Rosso, K.M. Nagy, K.L. Cygan, R.T. and Tadanier, C.J., 2003 Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications for acid-base reactivity Clays and Clay Minerals 51 359371.CrossRefGoogle Scholar
Bleam, W.F., 1993 Atomic theories of phyllosilicates-quantum-chemistry, statistical-mechanics, electrostatic theory, and crystal-chemistry Reviews of Geophysics 31 5173.CrossRefGoogle Scholar
Boek, E.S. and Sprik, M., 2003 Ab initio molecular dynamics study of the hydration of a sodium smectite clay Journal of Physical Chemistry B 107 32513256.CrossRefGoogle Scholar
Boulet, P. Greenwell, H.C. Stackhouse, S. and Coveney, P.V., 2006 Recent advances in understanding the structure and reactivity of clays using electronic structure calculations Journal of Molecular Structure-Theochem 762 3348.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B., 1997 A mechanistic description of Ni and Zn sorption on Na-montmorillonite. 2. Modelling Journal of Contaminant Hydrology 27 223248.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B., 1999 Modelling the sorption of Zn and Ni on Ca-montmorillonite Geochimica et Cosmochimica Acta 63 325336.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B., 2005 Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides Geochimica et Cosmochimica Acta 69 875892.CrossRefGoogle Scholar
Bradbury, M.H. and Baeyens, B., 2005 Experimental measurements and modeling of sorption competition on montmorillonite Geochimica et Cosmochimica Acta 69 41874197.CrossRefGoogle Scholar
Bradbury, M.H. Baeyens, B. Geckeis, H. and Rabung, T., 2005 Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 2: Surface complexation modelling Geochimica et Cosmochimica Acta 69 54035412.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G. (editors) (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society Monograph 5, London.CrossRefGoogle Scholar
Brigatti, M.F. Galán, E. and Theng, B.K.G., 2013 Structure and mineralogy of clay minerals Handbook of Clay Science 5A 2181.CrossRefGoogle Scholar
Car, R. and Parrinello, M., 1985 Unified approach for molecular-dynamics and density-functional theory Physical Review Letters 55 24712474.CrossRefGoogle ScholarPubMed
Carter, E.A. Ciccotti, G. Hynes, J.T. and Kapral, R., 1989 Constrained reaction coordinate dynamics for the simulation of rare events Chemical Physics Letters 156 472477.CrossRefGoogle Scholar
Churakov, S.V., 2007 Structure and dynamics of the water films confined between edges of pyrophyllite: a first principle study Geochimica et Cosmochimica Acta 71 11301144.CrossRefGoogle Scholar
Churakov, S.V. and Kosakowski, G., 2010 An ab initio molecular dynamics study of hydronium complexation in Na-montmorillonite Phi losophical Magazine 90 24592474.CrossRefGoogle Scholar
Churakov, S.V. and Dähn, R., 2012 Zinc adsorption on clays inferred from atomistic simulations and EXAFS spectroscopy Environmental Science & Technology 46 57135719.CrossRefGoogle ScholarPubMed
Cygan, R.T. Greathouse, J.A. Heinz, H. and Kalinichev, A.G., 2009 Molecular models and simulations of layered materials Journal of Materials Chemistry 19 2470.CrossRefGoogle Scholar
Dähn, R. Scheidegger, A.M. Manceau, A. Schlegel, M.L. Baeyens, B. Bradbury, M.H. and Chateigner, D., 2003 Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine s tructure study Geochimica et Cosmochimica Acta 67 115.CrossRefGoogle Scholar
Dähn, R. Baeyens, B. and Bradbury, M.H., 2011 Investigation of the different binding edge sites for Zn on montmorillonite using P-EXAFS — the strong/weak site concept in the 2SPNE SC/CE sorption model Geochimica et Cosmochimica Acta 75 51545168.CrossRefGoogle Scholar
Davis, J.A. and Kent, D.B., 1990 Surface complexation modeling in aqueous geochemistry Mineral-Water Interface Geochemistry 23 177260.CrossRefGoogle Scholar
Ensing, B. Meijer, E.J. Blochl, P.E. and Baerends, E.J., 2001 Solvation effects on the S(N)2 reaction between CH3Cl and Cl- in water Journal of Physical Chemistry A 105 33003310.CrossRefGoogle Scholar
Evans, L.J., 1989 Chemistry of metal retention by soils — several processes are explained Environmental Science & Technology 23 10461056.CrossRefGoogle Scholar
Gaines, G.L. and Thomas, H.C., 1953 Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption Journal of Chemical Physics 21 714718.CrossRefGoogle Scholar
Geckeis, H. Luetzenkirchen, J. Polly, R. Rabung, T. and Schmidt, M., 2013 Mineral-water interface reactions of actinides Chemical Reviews 113 10161062.CrossRefGoogle ScholarPubMed
Goedecker, S. Teter, M. and Hutter, J., 1996 Separable dual-space Gaussian pseudopotentials Physical Review B 54 17031710.CrossRefGoogle ScholarPubMed
Gu, X. and Evans, L.J., 2008 Surface complexation modelling of Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) adsorption onto kaolinite Geochimica et Cosmochimica Acta 72 267276.CrossRefGoogle Scholar
Gu, X. Evans, L.J. and Barabash, S.J., 2010 Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite Geochimica et Cosmochimica Acta 74 57185728.CrossRefGoogle Scholar
Gu, X. Sun, J. and Evans, L.J., 2014 The development of a multi-surface soil speciation model for Cd (II) and Pb (II): comparison of two approaches for metal adsorption to clay fractions Applied Geochemistry 47 99108.CrossRefGoogle Scholar
Ikhsan, J. Wells, J.D. Johnson, B.B. and Angove, M.J., 2005 Surface complexation modeling of the sorption of Zn(II) by montmorillonite Colloids and Surfaces A-Physicochemical and Engineering Aspects 252 3341.Google Scholar
Jo, H.Y. Benson, C.H. and Edil, T.B., 2006 Rate-limited cation exchange in thin bentonitic barrier layers Canadian Geotechnical Journal 43 370391.CrossRefGoogle Scholar
Kremleva, A., Krueger, S., and Roesch, N. (2009) Uranyl adsorption at solvated (010) edge surfaces of kaolinite. Abstracts of Papers of the American Chemical Society, 237.Google Scholar
Kremleva, A. Krueger, S. and Roesch, N., 2011 Uranyl adsorption at (010) edge surfaces of kaolinite: a density functional study Geochimica et Cosmochimica Acta 75 706718.CrossRefGoogle Scholar
Kremleva, A. Martorell, B. Krueger, S. and Roesch, N., 2012 Uranyl adsorption on solvated edge surfaces of pyrophyllite: a DFT model study Physical Chemistry Chemical Physics 14 58155823.CrossRefGoogle ScholarPubMed
Kremleva, A. Krueger, S. and Roesch, N., 2015 Uranyl adsorption at solvated edge surfaces of 2:1 smectites. A density functional study Physical Chemistry Chemical Physics 17 1375713768.CrossRefGoogle ScholarPubMed
Kubicki, J.D. Kwon, K.D. Paul, K.W. and Sparks, D.L., 2007 Surface complex structures modelled with quantum chemical calculations: carbonate, phosphate, sulphate, arsenate and arsenite European Journal of Soil Science 58 932944.CrossRefGoogle Scholar
Lagaly, G. and Dékány, I., 2013 Colloid clay science Handbook of Clay Science 5A 243345.CrossRefGoogle Scholar
Lippert, G. Hutter, J. and Parrinello, M., 1997 A hybrid Gaussian and plane wave density functional scheme Molecular Physics 92 477487.CrossRefGoogle Scholar
Liu, X. and Lu, X., 2006 A thermodynamic understanding of clay-swelling inhibition by potassium ions Angewandte Chemie 45 63006303.CrossRefGoogle ScholarPubMed
Liu, X. Lu, X. Wang, R. and Zhou, H., 2008 Effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectite Geochimica et Cosmochimica Acta 72 18371847.CrossRefGoogle Scholar
Liu, X. Lu, X. Wang, R. Meijer, E.J. and Zhou, H., 2011 Acidities of confined water in interlayer space of clay minerals Geochimica et Cosmochimica Acta 75 49784986.CrossRefGoogle Scholar
Liu, X. Lu, X. Meijer, E.J. Wang, R. and Zhou, H., 2012 Atomic-scale structures of interfaces between phyllosilicate edges and water Geochimica et Cosmochimica Acta 81 5668.CrossRefGoogle Scholar
Liu, X. Lu, X. Wang, R. Meijer, E.J. Zhou, H. and He, H., 2012 Atomic scale structures of interfaces between kaolinite edges and water Geochimica et Cosmochimica Acta 92 233242.CrossRefGoogle Scholar
Liu, X. Meijer, E.J. Lu, X. and Wang, R., 2012 First-principles molecular dynamics insight into Fe2+ complexes adsorbed on edge surfaces of clay minerals Clays and Clay Minerals 60 341347.CrossRefGoogle Scholar
Liu, X. Cheng, J. Sprik, M. Lu, X. and Wang, R., 2013 Understanding surface acidity of gibbsite with first principles molecular dynamics simulations Geochimica et Cosmochimica Acta 120 487495.CrossRefGoogle Scholar
Liu, X. Lu, X. Sprik, M. Cheng, J. Meijer, E.J. and Wang, R., 2013 Acidity of edge surface sites of montmorillonite and kaolinite Geochimica et Cosmochimica Acta 117 180190.CrossRefGoogle Scholar
Liu, X. Cheng, J. Sprik, M. Lu, X. and Wang, R., 2014 Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulat ions Geochimica et Cosmochimica Acta 140 410417.CrossRefGoogle Scholar
Martorell, B. Kremleva, A. Krueger, S. and Roesch, N., 2010 Density functional model study of uranyl adsorption on the solvated (001) surface of kaolinite Journal of Physical Chemistry C 114 1328713294.CrossRefGoogle Scholar
Marx, D. and Hutter, J., 2009 Ab initio Molecular Dynamics — Basic Theory and Advance Methods Cambridge, UK Cambridge University Press.CrossRefGoogle Scholar
Mooney, R.W. Keenan, A.G. and Wood, L.A., 1952 Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction Journal of the American Chemical Society 74 13671371.CrossRefGoogle Scholar
Perdew, J.P. Burke, K. and Ernzerhof, M., 1996 Generalized gradient approximation made simple Physical Review Letters 77 38653868.CrossRefGoogle Scholar
Pye, C.C. Tomney, M.R. and Rudolph, W.W., 2006 Cadmium hydration: hexacoordinate or heptacoordinate? Canadian Journal of Analytical Sciences and Spectroscopy 51 140146.Google Scholar
Rudolph, W.W. and Pye, C.C., 1998 Raman spectroscopic measurements and ab initio molecular orbital studies of cadmium(II) hydration in aqueous solution Journal of Physical Chemistry B 102 35643573.CrossRefGoogle Scholar
Schlegel, M.L. and Manceau, A., 2013 Binding mechanism of Cu(II) at the clay-water interface by powder and polarized EXAFS spectroscopy Geochimica et Cosmochimica Acta 113 113124.CrossRefGoogle Scholar
Schoonheydt, R.A. and Johnston, C.T., 2013 Surface and interface chemistry of clay minerals Handbook of Clay Science 5A 139172.CrossRefGoogle Scholar
Soltermann, D. Baeyens, B. Bradbury, M.H. and Fernandes, M.M., 2014 Fe(II) uptake on natural montmorillonites. II. Surface complexation modeling Environmental Science & Technology 48 86988705.CrossRefGoogle ScholarPubMed
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford University Press.Google Scholar
Sposito, G. Skipper, N.T. Sutton, R. Park, S.H. Soper, A.K. and Greathouse, J.A., 1999 Surface geochemistry of the clay minerals Proceedings of the National Academy of Sciences of the United States of America 96 33583364.CrossRefGoogle ScholarPubMed
Sprik, M., 1998 Coordination numbers as reaction coordinates in constrained molecular dynamics Faraday Discussions 110 437445.CrossRefGoogle Scholar
Sprik, M. and Ciccotti, G., 1998 Free energy from constrained molecular dynamics Journal of Chemical Physics 109 77377744.CrossRefGoogle Scholar
Sprik, M., 2000 Computation of the pK of liquid water using coordination constraints Chemical Physics 258 139150.CrossRefGoogle Scholar
Tournassat, C. Grangeon, S. Leroy, P. and Giffaut, E., 2013 Modeling specific pH dependent sorption of divalent metals on montmorillonite surfaces. A review of pitfalls, recent achievements and current challenges American Journal of Science 313 395451.CrossRefGoogle Scholar
Tunega, D. Gerzabek, M.H. and Lischka, H., 2004 Ab initio molecular dynamics study of a monomolecular water layer on octahedral and tetrahedral kaolinite surfaces Journal of Physical Chemistry B 108 59305936.CrossRefGoogle Scholar
Turner, D.R. Bertetti, F.P. Pabalan, R.T., Johannes, L., 2006 Applying surface complexation modeling to radionuclide sorption Interface Science and Technology 553604.CrossRefGoogle Scholar
VandeVondele, J. Krack, M. Mohamed, F. Parrinello, M. Chassaing, T. and Hutter, J., 2005 QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach Computer Physics Communications 167 103128.CrossRefGoogle Scholar
Viani, A. Gaultieri, A.F. and Artioli, G., 2002 The nature of disorder in montmorillonite by simulation of X-ray powder patterns American Mineralogist 87 966975.CrossRefGoogle Scholar
Wagner, J.F., 2013 Clay liners and waste disposal Handbook Of Clay Science 5A 663676.CrossRefGoogle Scholar
White, G.N. and Zelazny, L.W., 1988 Analysis and implications of the edge structure of dioctahedral phyllosilicates Clays and Clay Minerals 36 141146.CrossRefGoogle Scholar
Yuan, G.D. Theng, B.K.G. Churchman, G.J. and Gates, W.P., 2013 Clays and clay minerals for pollution control Handbook of Clay Science 5A 587644.CrossRefGoogle Scholar
Zachara, J.M. Smith, S.C. McKinley, J.P. and Resch, C.T., 1993 Cadmium sorption on specimen and soil smectites in sodium and calcium electrolytes Soil Science Society of America Journal 57 14911501.CrossRefGoogle Scholar
Zachara, J.M. and Smith, S.C., 1994 Edge complexation reactions of cadmium on specimen and soil-derived smectite Soil Science Society of America Journal 58 762769.CrossRefGoogle Scholar