Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-31T07:26:14.170Z Has data issue: false hasContentIssue false

Ca-Bearing Rectorite from Tooho Mine, Japan

Published online by Cambridge University Press:  01 July 2024

Tsutomu Nishiyama
Affiliation:
Natural Science Laboratory, Toho University, Hakusan 5-28-20, Bunkyo-ku, Tokyo 112, Japan
Susumu Shimoda
Affiliation:
Institute of Geoscience, University of Tsukuba, Sakuramura, Niihari-gun, Ibaraki Prefecture, Japan

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1981, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G. W., (1956) Allevardite, a swelling double-layer mica mineral Amer. Mineral. 41 91103.Google Scholar
Brindley, G. W. and Brown, G., (1961) Quantitative analysis of clay mixtures X-ray Identification and Crystal Structures of Clay Minerals 2 London Mineral. Society 489516.Google Scholar
Brown, G. Weir, A. H., Rosenquist, I. T. and Graff-Petersen, P., (1963) The identity of rectorite and allevardite Proc. Int. Clay Conf, Stockholm, 1963, vol. 1 Oxford Pergamon Press 2735.Google Scholar
Caillère, S. Mathieu-Scicaud, A. and Hénin, S., (1950) Nouvel essai d’identification du minéral de La Table prés Allevard, l’allevardite Bull. Soc. Fr. Mineral. Crislallogr. 73 193202.Google Scholar
Eberl, D. D., (1978) The reaction of montmorillonite to mixedlayer clay: the effect of interlayer alkali and alkaline earth cations Geochim. Cosmochim. Acta 42 17.CrossRefGoogle Scholar
Hendricks, S. B. Nelson, R. A. and Alexander, L. T., (1940) Hydration mechanism of the clay mineral montmorillonite, saturated with various cations J. Amer. Chem. Soc. 62 14571464.CrossRefGoogle Scholar
Hénin, S. Esquevin, J. and Caillère, S., (1954) Sur la fibrosité de certain minéraux de nature montmorillonitique Bull. Soc. Fr. Mineral. Cristallogr. 77 491499.Google Scholar
Ingram, B. L., (1970) Determination of fluorite in silicate rocks without separation of aluminum using a specific ion electrode Anal. Chem. 42 18251827.CrossRefGoogle Scholar
Kodama, H., (1966) The nature of the component layers of rectorite Amer. Mineral. 51 10351055.Google Scholar
Matsuda, T. and Nagasawa, K., (1977) Comparisons of characteristics of expansible components between regularly interstratified mica-smectite and chlorite-smectite J. Mineral. Soc. Japan 13 111118.Google Scholar
Nishiyama, T. Shimoda, S. Shimosaka, K. and Kanaoka, S., (1975) Lithium-bearing tosudite Clays & Clay Minerals 23 337342.CrossRefGoogle Scholar
Nishiyama, T. and Oiunma, K. (1978) One-dimensional Fourier synthesis of clay minerals. Part 1. Dioctahedral mica, montmorillonite and 1:1 regular interstratified mica-montmorillonite: J. Toyo Univ. Gen. Ed. (Nat. Sci.) No. 21, 138.Google Scholar
Shimoda, S. Kohyama, N. and Ishikawa, Y., (1974) Some problems on the origin of interstratified mica clay minerals J. Mineral. Soc. Japan 11 169179.Google Scholar
Schultz, L. G., (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites Clays & Clay Minerals 17 115149.CrossRefGoogle Scholar
Weaver, C. E. and Pollard, L. D., (1975) The Chemistry of Clay Minerals Amsterdam Elsevier 107109.Google Scholar