Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-06T04:02:15.214Z Has data issue: false hasContentIssue false

19F MAS-NMR Study of Structural Fluorine in Some Natural and Synthetic 2:1 Layer Silicates

Published online by Cambridge University Press:  28 February 2024

Laurent Huve
Affiliation:
Laboratoire de Matériaux Minéraux, URA-CNRS 0428, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
Luc Delmotte
Affiliation:
Laboratoire de Matériaux Minéraux, URA-CNRS 0428, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
Pascal Martin
Affiliation:
Laboratoire de Matériaux Minéraux, URA-CNRS 0428, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
Ronan Le Dred
Affiliation:
Laboratoire de Matériaux Minéraux, URA-CNRS 0428, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
Jacques Baron
Affiliation:
Laboratoire de Matériaux Minéraux, URA-CNRS 0428, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
Daniel Saehr
Affiliation:
Laboratoire de Matériaux Minéraux, URA-CNRS 0428, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France

Abstract

High-resolution solid-state, fluorine-19, magic-angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR) was used to study natural and synthetic fluorinated 2:1 layer silicates of known composition. This technique enabled us to determine directly the coordination of structural fluorine and it was found to be sensitive to both the chemical nature of the octahedral elements (Al, Mg, Li) and the type of octahedral sheet (di- or trioctahedral). The observed chemical shifts at −132, −152, −176 and −182 ppm (relative to CFC13) were assigned to different environments of fluorine. The results were then used to characterize synthetic 2:1 layer silicates with unknown octahedral composition.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, A., Pérez-Castells, R., Tortuero, F., Alzueta, C. and Günther, K. D., Structural fluorine in sepiolite; Leaching and biological effects J. Animal Physiol. & Anim. Nutr. 1987 58 208214 10.1111/j.1439-0396.1987.tb00165.x.CrossRefGoogle Scholar
Calvet, R. and Prost, R., Cation migration into empty octahedral sites and surface properties of clays Clays & Clay Minerals 1971 19 175186 10.1346/CCMN.1971.0190306.CrossRefGoogle Scholar
Clark, J. H., Goodman, E. M., Smith, D. K., Brown, S. J. and Miller, J. M., High-resolution solid-state 19F. N.M.R. spectroscopy as a tool for the study of ionic fluorides J. Chem. Soc. Chem. Commun. 1986 657658.CrossRefGoogle Scholar
Daniel, M. E. and Hood, W. C., Alteration of shale adjacent to the Knight orebody, Rosiclare, Illinois Econ. Geol. 1975 70 10621069 10.2113/gsecongeo.70.6.1062.CrossRefGoogle Scholar
Delmotte, L., Soulard, M., Guth, F., Seive, A., Lopez, A. and Guth, J. L., Fluorine-19 MAS-NMR studies of crystalline microporous solids synthesized in the fluoride medium Zeolites 1990 10 778783 10.1016/0144-2449(90)90061-U.CrossRefGoogle Scholar
Frant, M. S. and Ross, J. W. Jr., Electrode for sensing fluoride ion activity in solution Science 1966 154 15531555 10.1126/science.154.3756.1553.CrossRefGoogle ScholarPubMed
Granquist, W. T. and Pollack, S. S., Clay mineral synthesis—II. A randomly interstratified aluminian mont-morillonoid Amer. Mineral. 1967 52 212226.Google Scholar
Granquist, W. T. and Township, M., Synthetic silicate minerals 1966.Google Scholar
Harward, M. E., and Brindley, G. W., (1964) Swelling properties of synthetic smectites in relation to lattice substitutions: in Clays and Clay Minerals, Proc. 13th Natl. Conf. on Clays and Clay Minerals, Madison, Wisconsin, 1964, Bradley, W. F., and Bailey, S. W., eds., Pergamon Press, New York, 209222.Google Scholar
Huve, L. L., Dred, R., Saehr, D. and Baron, J., Synthesis of dioctahedral 2:1 layer silicates in acid and fluoride medium 1991.CrossRefGoogle Scholar
Kinsey, R. A., Kirkpatrick, R. J., Hower, J., Smith, K. A. and Oldfield, E., High resolution aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopic study of layer silicates, including clay minerals Amer. Mineral. 1985 70 537548.Google Scholar
Köster, H. M., (1982) The crystal structure of 2:1 layer silicates: in Proc. Int. Clay Conf., Bologna, and Pavia, , 1981, H. Olphen, Van and Veniale, F., eds., 1982, Elsevier, New York, 4171.Google Scholar
Kreinbrink, A. T., Sazavsky, C. D., Pyrz, J. W., Nelson, D G A and Honkonen, R. S., Fast-magic-angle spinning 19F NMR of inorganic fluorides and fluorinated apa-titic surfaces J. Magn. Reson. 1990 88 267276.Google Scholar
Pauling, L., The Nature of the Chemical Bond 1960 3rd New York Cornell University Press.Google Scholar
Raudsepp, M., Turnock, A. C., Hawthorne, F. C., Sherriff, B. L. and Hartman, J. S., Characterization of synthetic pargasitic amphiboles (NaCa2Mg4M3+Si6Al2O22-(OH,F)2; M3+ = Al, Cr, Ga, Sc, In) by infrared spectroscopy, Rietveld structure refinement, and 27A1,29Si, 19F MAS NMR spectroscopy Amer. Mineral. 1987 72 580593.Google Scholar
Santaren, J., Sanz, J. and Ruiz-Hitzky, E., Structural fluoride in sepiolite Clays & Clay Minerals 1990 38 6368 10.1346/CCMN.1990.0380109.CrossRefGoogle Scholar
Sanz, J. and Serratosa, J. M., 29Si and 27Al high-resolution MAS-NMR spectra of phyllosilicates J. Am. Chem. Soc. 1984 106 47904793 10.1021/ja00329a024.CrossRefGoogle Scholar
Sanz, J. and Stone, W. E. E., NMR study of micas, II—Distribution of Fe2+, F and OH in the octahedral sheet of phlogopites Amer. Mineral. 1979 64 119126.Google Scholar
Smith, K. A., Kirkpatrick, R. J., Oldfield, E. and Henderson, D. M., High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates Amer. Mineral. 1983 68 12061215.Google Scholar
Thomas, J Jr Glass, H. D., White, W. A. and Trandel, R. N., Fluoride content of clay minerals and argillaceous earth materials Clays & Clay Minerals 1977 25 278284 10.1346/CCMN.1977.0250405.CrossRefGoogle Scholar
Thompson, J. G., 29Si and 27Al nuclear magnetic resonance spectroscopy of 2:1 clay minerals Clay Miner. 1984 19 229236 10.1180/claymin.1984.019.2.09.CrossRefGoogle Scholar
Torii, K., and Iwasaki, T., (1987) Preparation of swelling saponite-type smectite silicates: Japanese patent 62 292 616 [87 292 616].Google Scholar
Weiss, C. A. Jr. Altaner, S. P. and Kirkpatrick, R. J., High-resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions and chemical variations Amer. Mineral. 1987 72 935942.Google Scholar
Wright, A. C., Granquist, W. T. and Kennedy, J. V., Catalysis by layer lattice silicates I. The structure and thermal modification of a synthetic ammonium dioctahedral clay J. Catal. 1972 25 6580 10.1016/0021-9517(72)90202-3.CrossRefGoogle Scholar
Yesinowski, J. P. and Mobley, M. J., 19F MAS-NMR of fluorinated hydroxyapatite surfaces J. Am. Chem. Soc. 1983 105 61916193 10.1021/ja00357a060.CrossRefGoogle Scholar