Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-16T11:15:25.514Z Has data issue: false hasContentIssue false

Summary of Clay-Mineral Studies in Germany, 1954 and 1955

Published online by Cambridge University Press:  01 January 2024

Ulrich Hofmann*
Affiliation:
Technische Hochschule, Darmstadt, Germany

Abstract

Correns and Lippmann have extended the work carried out in England on swelling chlorites by some investigations on Keuper clays.

Dietzel has succeeded in showing that the infrared absorption band of kaolinite at 2.7 μ has two peaks which can be correlated with two different kinds of (OH) groups in the structure.

The “fire-clay” type of clay mineral has been found in Grossalmeroder clay by Lippmann and in Frantex clay from Provins by von Engelhardt. In Frantex clay especially the layer sequence is highly disordered. Halloysite is distinguished from these minerals by its greater layer spacing and metahalloysite by its tubular morphology.

Winkler has studied the particle size distribution of numerous brick clays and has established that the mineral must have a certain proportion of fine and coarse clay and fine sand, but also a very smooth particle size distribution curve from the finest to the coarsest particles if the clay is to be suitable for thin-walled ware.

The clay mineral section of the Deutsche Keramische Gesellschaft tested various methods for quantitative clay mineral analysis. More than 20 laboratories used the following methods: x-ray analysis, dilatometer analysis, D.T.A., dehydration curves, microscopic analysis, and the determination of free silica by solution in phosphoric acid.

By the investigation of mixtures made up of the purest quartz, feldspar, halloysite, illite, kaolinite, montmorillonite and “fire-clay” mineral, the correct values were found for the most part within a few percent.

In the investigation of natural clays, greater differences were found, amounting to as much as 10 percent. Von Engelhardt especially investigated the errors arising with Geiger counter x-ray equipment.

Type
Article
Copyright
Copyright © The Clay Minerals Society 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G. W., and Robinson, K., 1946, Randomness in the structure of the kaolinite clay minerals: Faraday Soc. Trans., v. 42B, p. 198205.CrossRefGoogle Scholar
Engelhardt, W. v., 1954, Ein Tonmineral der Kaolinit-Halloysil Gruppe von Provens (Frankreich): Heidelberger Beitr. Min. u. Petrograph., v. 4, p. 319324.Google Scholar
Engelhardt, W. v., 1955, Über die Möglichkeit der quantitativen Phasenanalyse von Tonen mit Röntgenstrahlen: Z. Krist., v. 106, p. 430459.Google Scholar
Flörke, O. W., 1955, Zür Frage des Hochcristobalit in Opalen, Bentoniten und Gläsern: Neues Jahrbuch für Mineralogie, v. 88, p. 217223.Google Scholar
Franklin, R. E., 1951, The structure of graphitic carbons: Acta Cryst., v. 4, p. 253261.CrossRefGoogle Scholar
Hofmann, U., Endeil, K., and Wilm, D., 1934, Röntgenographische und kolloidchemische Untersuchungen über Ton: Angew. Chem., v. 47, p. 539547.CrossRefGoogle Scholar
Hofmann, U., and Wilm, D., 1936, Über die Kri stall struktur von Kohlenstoff: Z. Elektrochemie, v. 42, p. 504522.Google Scholar
Hofmann, U., and Wilm, D., 1944: Naturwissenschaften, p. 260.CrossRefGoogle Scholar
Honeyborne, D. B., 1951, The clay minerals in the Keuper Marl: Clay Minerals Bull., v. 1, p. 150157.CrossRefGoogle Scholar
Jagodzinski, E., 1949, Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Röntgeninterferen. III Vergleich der Berechnungen mit experimentellen Ergebnissen: Acta Cryst., v. 2, p. 298304.CrossRefGoogle Scholar
Lippman, F., 1953: Sprechsaal, v. 86, p. 218.Google Scholar
Lippman, F., 1954, Über einen Keuperton von Zaisersweiher bei Maulbronn: Heidelberger Beitr. Min. u. Petrograph., v. 4, p. 130150.Google Scholar
Nagelschmidt, G., Gordon, R. L., and Griffin, O. G., 1952, Surface of finely ground silica: Nature, v. 169, p. 539540.CrossRefGoogle Scholar
Nagelschmidt, G., Gordon, R. L., and Griffin, O. G., 1955, Effect of particle-size on the quantitative determination of quartz by x-ray diffraction: Nature, v. 175, p. 1135.Google Scholar
Scholze, H., and Dietzel, A., 1955: Naturwissenschaften, p. 575.CrossRefGoogle Scholar
Stephen, I., and MacEwan, D. M. C., 1951, Some chloritic clay minerals of unusual type: Clay Minerals Bull., v. 1, p. 157162.CrossRefGoogle Scholar
Winkler, H. G. F., 1954: Ber. Dtsch. Keram. Ges., v. 31, p. 337.Google Scholar