Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-16T13:13:28.535Z Has data issue: false hasContentIssue false

Intracrystalline Swelling, Cation Exchange, and Anion Exchange of Minerals of the Montmoril-Lonite Group and of Kaolinite

Published online by Cambridge University Press:  01 January 2024

Ulrich Hofmann
Affiliation:
Technische Hochschule, Darmstadt, Germany
Armin Weiss
Affiliation:
Technische Hochschule, Darmstadt, Germany
G. Koch
Affiliation:
Technische Hochschule, Darmstadt, Germany
A. Mehler
Affiliation:
Technische Hochschule, Darmstadt, Germany
A. Scholz
Affiliation:
Technische Hochschule, Darmstadt, Germany

Abstract

The structural formulas were determined of very pure specimens of montmorillonite, bei-dellite, saponite, nontronite, hectorite, wolchonskoite, vermiculite, and batavite. The lattice perfection of these minerals and the nature and variation of their crystalline swelling depend significantly on the surface density of the exchangeable cations between the silicate sheets.

In a neutral solution of NH4F, OH ions were replaced by F ions. The exchange capacity is smaller the greater the diameter of the silicate layers of the various montmorillonite minerals. Since the anion-exchange capacity of nontronite can be increased through oxidation of Fe2 it is probable that the exchangeable OH ions are located on the boundaries of the octahedral layers.

With kaolinite, the cation-exchange capacity decreases with increasing thickness of the crystal plates. The OH ions of the basal surface can be exchanged with F ions, which leads to the destruction of the lattice.

A one-dimensional Fourier synthesis of K-batavite, like the investigations of Walker on vermiculite and of Brown and also Méring on montmorillonite, provides confirmation of the structure and enables the lattice positions of the K ions to be determined.

Type
Article
Copyright
Copyright © The Clay Minerals Society 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, T. F., Hildebrand, F. A., and Swineford, Ada, 1950, Morphology and structure of en- deilite and halloysite: Amer. Min., v. 35. p. 463434.Google Scholar
Brown, George, 1950, A Fourier investigation of montmorillonite: Clay Minerals Bull., v. 1, p. 109111.CrossRefGoogle Scholar
Goldsztaub, S., Hénin, S., and Wey, R., 1954, Sur l'adsorption d'ions phosphoriques par les argiles: Clay Minerals Bull., v. 2, p. 162166.CrossRefGoogle Scholar
Grim, R. E., 1953, Clay mineralogy: McGraw-Hill Book Company, Inc., New York, 384 p.Google Scholar
Hofmann, Ulrich, and Endell, J. 1939, Die Abhängigkeit des Kationenaustausches und der Quellung bei Montmorillonit von der Vorerhitzung (Auszug): Z. Angewandte Chemie, v. 52, p. 708.CrossRefGoogle Scholar
Hofmann, Ulrich, Endell, K., and Wilm, D., 1944, Kristallstruktur and Quellung von Montmorillonit: Z. Krist, v. 86, p. 340347.Google Scholar
Hofmann, Ulrich, and Kiemen, R., 1950, Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung: Z. anorg. Chem., v. 262, p. 9599.CrossRefGoogle Scholar
Marshall, C. E., 1935, Layer lattices and base-exchange clays: Z. Krist, v. 91, p. 433449.Google Scholar
Marshall, C. E., 1949, The colloid chemistry of the silicate minerals: Academic Press, Inc., New York, 180 p.Google Scholar
Mathieson, A. McL., and Walker, G. F., 1954, Crystal structure of vermiculite: Amer. Min., v. 39, p. 231255.Google Scholar
Noli, W., 1936, Synthese von Montmorilloniten: Chem. Erde, v. 10, p. 129154.Google Scholar
Pézerat, H., and Méring, J., 1954, Influence des substitutions isomorphes sur les paramètres de structure des phyllites: Clay Minerals Bull., v. 2, p. 156162.CrossRefGoogle Scholar
Robertson, R. H. S., Brindley, G. W., and Mackenzie, R. C., 1954, Mineralogy of kaolin clays from Pugu, Tanganyika: Amer. Min., v. 39, p. 118138.Google Scholar
Romo, L. A., and Rustum, Roy, 1955, F-OH exchange in layer silicates (Abs.): in Clays and clay minerals, Natl. Acad. Sci.—Natl, Res. Council Pub. 395, p. 402.Google Scholar
Ross, C. S., and Hendricks, S. B., 1941, Clay minerals of the montmorillonite group: their mineral and chemical relationships and the factors controlling base exchange: Soil Sci. Soc. Amer. Proc., v. 6, p. 5862.CrossRefGoogle Scholar
Ross, C. S., and Hendricks, S. B., 1945, Minerals of the montmorillonite group: U. S. Geol. Survey Prof. Paper 205B, p. 2379.Google Scholar
Weiss, Armin, Koch, G., and Hofmann, Ulrich, 1955: Ber. Dtsch. Keram. Ges., v. 32, p. 12.Google Scholar
Weiss, Armin, Mehler, A., Koch, G., and Hofmann, Ulrich, 1956, Z. anorg. Chem., ν. 284, p. 247.CrossRefGoogle Scholar