Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T11:48:42.682Z Has data issue: false hasContentIssue false

New data on Sepiolite and Attapulgite

Published online by Cambridge University Press:  01 January 2024

Fred A. Mumpton
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania, USA
Rustum Roy
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania, USA

Abstract

Hydrothermal studies have failed to yield synthetic attapulgite or sepiolites in the system MgO-Al2O3-SiO2-H2O. However, the natural minerals can be decomposed to yield mont-morillonoids by mild hydrothermal treatment as low as 200°C and probably as low as 100°C. These data indicate that they are metastable and probably could not have formed at these temperatures.

Dry dehydration at 400° and 750°C gave no evidence for the presence of “zeolitic water” in these minerals and failed to establish the existence of “anhydride” phases. The field study of relationships in one sepiolite locality suggests the importance of structural control in the formation of these minerals.

Type
Article
Copyright
Copyright © Clay Minerals Society 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contribution no. 56-44, College of Mineral Industries, The Pennsylvania State University, University Park, Pa.

References

Bowen, N. L., and Tuttle, O. F., 1949, The system MgO-SiO2-H2O: Geol. Soc. Amer., Bull. 60, p. 439460.CrossRefGoogle Scholar
Bradley, W. F., 1940, The structural scheme of attapulgite: Amer. Min., v. 25, p. 405410.Google Scholar
Brauner, K., and Preisinger, A., 1956, The structure and origin of sepiolite: Tschermaks mineralog, u. petrog. Mitte. (Vienna), v. 6, p. 120140.CrossRefGoogle Scholar
Caillère, S., 1936, Some asbestiform and papyraceous silicates not belonging to the anti- gorite group: Bull. Soc. Franc. Min., v. 59, p. 352374.Google Scholar
Caillère, S., 1951, Sepiolite: in X-ray identification and crystal structures of clay minerals, Mineralogical Society, London, p. 224233.Google Scholar
Caillère, S., 1951a, Palygorskite-attapulgite: in X-ray identification and crystal structures of clay minerals, Mineralogical Society, London, p. 234243.Google Scholar
Caillère, S., and Hénin, S., 1949, Occurrence of sepiolite in the Lizard serpentine: Nature, v. 163, p. 962.CrossRefGoogle Scholar
Gerasimov, N. P., Grushko, T. E., and Chirvinsky, P. N., 1949, Minerai palygorskitovoi gruppy iz solikamskogo gorizonta kungurskogo yarusa v zapadnom Predurale: Vsesoyuz. Miner. Obshch., Zap., ν. 78, no. 2, p. 95100.Google Scholar
Heystek, H., and Schmidt, E. R., 1953, The mineralogy of the attapulgite-montmorillonite deposit in the Springbok Flats, Transvaal: Geol. Soc. S. Africa, Trans., v. 56, p. 99119.Google Scholar
Kauffman, A. J. Jr., 1943, Fibrous sepiolite from Yavapai County, Arizona: Amer. Min., v. 28, p. 512520.Google Scholar
Kerr, P. F., 1937, Attapulgus clay: Amer. Min., v. 22, p. 534550.Google Scholar
Kerr, P. F., and others, 1949, Analytical data on reference clay minerals: in Reference clay minerals, A. P. I. Res. Project 49, Prelim. Rept. 7, 161 p.Google Scholar
LaCroix, A., 1940, Les transformations minéralogiques secondaires observées dans les gisements de phlogopite de l'extreme-sud de Madagascar: Compt. Rend. Acad. Sci., ν. 210, p. 353357.Google Scholar
Lapparent, Jacques de, 1936, Les milieux générateurs de la montmorillonite et de la sepiolite: Compt. Rend. Acad. Sci. Paris, v. 203, p. 553555.Google Scholar
Longchambon, Henri, 1935, Sur les constituants minéralogiques essentiels des argiles, en particulier des terres à foulon: Compt. Rend. Acad. Sci. Paris, v. 201, p. 483486.Google Scholar
Longchambon, Henri, 1937, Caractéristique de la sepiolite d'Ampandandrava et la formule des sépiolites: Bull. Soc. Franc. Min., v. 60, p. 232276.Google Scholar
Migeon, G., 1936, Sepiolites: Bull. Soc. Franc. Min., v. 59, p. 6134.Google Scholar
Mumpton, F. A., and Roy, Rustum, 1956, The influence of ionic substitution on the hydrothermal stability of montmorillonoids (ext. abs.): in Clays and clay minerals, Nat. Acad. Sci.—Nat. Res. Council pub. 456, p. 337339.Google Scholar
Nagy, Bartholomew, and Bradley, W. F., 1955, The structural scheme of sepiolite: Amer. Min., v. 40, p. 885892.Google Scholar
Roy, D. M., and Roy, Rustum, 1955, Synthesis and stability of minerals in the system MgO-Al2O3-SiO2-H2O: Amer. Min., v. 40, p. 147178.Google Scholar
Roy, D. M., Roy, Rustum, and Osborn, E. F., 1953, The system MgO-Al2O3-H2O and influence of carbonate and nitrate ions on the phase equilibria: Amer. J. Sci., v. 251, p. 337361.CrossRefGoogle Scholar
Roy, Rustum, and Osborn, E. F., 1952, Some simple aids in the hydrothermal investigation of mineral systems: Econ. Geol., v. 47, p. 717721.CrossRefGoogle Scholar
Serdyuchenko, D. P., 1949, Sepiolite from northern Caucasus: Doklady Acad. Nauk S.S.S.R., v. 69, p. 577580.Google Scholar
Shannon, E. V., 1929, Tschermigite, ammoniojarosite, epsomite, celestite, and paligorskite from southern Utah: U.S. Nat. Mus. Proc., v. 74, art. 13, 12 p.CrossRefGoogle Scholar
Yoder, H. S. Jr., 1952, The MgO-Al2O3-SiO2-H2O system and the related metamorphic facies: Amer. J. Sci., Bowen vol. 40 p. 569627.Google Scholar