Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T10:01:42.528Z Has data issue: false hasContentIssue false

Weathering products of andesitic rocks from Sulawesi, Indonesia

Published online by Cambridge University Press:  09 July 2018

H. W. Müller
Affiliation:
Institut für Bodenforschung und Baugeologie, Universität für Bodenkultur Wien
G. Riedmüller
Affiliation:
Institut für Technische Geologie, Petrographie und Mineralogie, Technische Universität Graz, Österreich
B. Schwaighofer
Affiliation:
Institut für Bodenforschung und Baugeologie, Universität für Bodenkultur Wien

Abstract

Mineralogical investigations of weathered andesitic bedrock and overburden on the valley flank of the Tondano river, Manado, Sulawesi, indicated that these had been subjected to different weathering conditions. The underlying andesite was completely altered to 7Å-halloysite and allophane. In the transported latosols of the overburden, 10Å- and 7Å-halloysites were found. The ratio of 10Å- to 7Å-halloysite increased linearly with depth in the profile. It is considered that weathering of the andesitic bedrock reflects a palaeoclimate with more strongly pronounced seasonal desiccation and lower annual rainfall. Neoformations by weathering of the overburden took place under the recent tropical climate.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aomine, S. & Wada, K. (1962) Differential weathering of volcanic ash and pumice, resulting in formation of hydrated halloysite. Am. Miner. 47, 10421048.Google Scholar
Bates, T.F. (1962) Halloysite and gibbsite formation in Hawaii. Clays Clay Miner. 9, 307314.Google Scholar
Blume, H.P. & Schwertmann, U. (1969) Genetic evaluation of profile distribution of aluminium, iron and manganese oxides. Soil Sci. Soc. Amer. Proc. 33, 438444.CrossRefGoogle Scholar
Brindley, G.W. & Goodyear, J. (1948) X-ray studies of halloysite and metahalloysite. Part II. The transition of halloysite to metahalloysite in relation to relative humidity. Mineral. Mag. 28, 407422.Google Scholar
Churchman, G.J., Aldridge, L.P. & Carr, R.M. (1972) The relationship between the hydrated and dehydrated states of an halloysite. Clays Clay Miner. 20, 241246.CrossRefGoogle Scholar
Churchman, G.J. & Carr, R.M. (1975) The definition and nomenclature of halloysites. Clay Clay Miner. 23, 382388.CrossRefGoogle Scholar
Dudas, M.J. & Haward, M.E. (1975) Weathering and authigenic halloysite in soil developed in Mazama ash. Soil. Sci. Soc. Am. Proc. 39, 561566.CrossRefGoogle Scholar
Eswaran, H. (1972) Morphology of allophane, imogolite and halloysite. Clay Miner. 9, 281285.CrossRefGoogle Scholar
Hay, R.L. (1959) Origin and weathering of late Pleistocene ash deposits on St. Vincent, B.W.I. J. Geol. 67, 6587.CrossRefGoogle Scholar
Huang, W.H. (1974) Stabilities of kaolinite and halloysite in relation to weathering of feldspars and nepheline in aqueous solution. Am. Miner. 59, 365371.Google Scholar
Kanno, I. (1956) A pedological investigation of Japanese volcanic ash soils. Trans. 6th Int. Congr. Soil Sci. (Paris) E, 105109.Google Scholar
Kirkman, J.H. (1980) Clay mineralogy of a sequence of andesitic tephra beds of western Tananaki, New Zealand. Clay Miner. 15, 157163.CrossRefGoogle Scholar
Kirkman, J.H. (1981) Morphology and structure of halloysite in New Zealand tephras. Clays Clay Miner. 29, 19.CrossRefGoogle Scholar
MacEwan, D.M.C. (1946) Halloysite-organic complexes. Nature 157, 159160.CrossRefGoogle Scholar
MacEwan, D.M.C. (1948) Complexes of clays with organic compounds. Trans. Faraday Soc. 44, 349368.CrossRefGoogle Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Clay Miner. 7, 317327.CrossRefGoogle Scholar
Minato, H. & Aoki, M. (1979) Rate of transformation of halloysite to metahalloysite under hydrothermal conditions. Proc. Int. Clay Conf. Oxford 619627.CrossRefGoogle Scholar
Parham, W.E. (1969) Halloysite-rich tropical weathering products of Hong Kong. Proc. Int. Clay Conf. Tokyo 1, 403416.Google Scholar
Riedmüller, G. (1978) Neoformations and transformations of clay minerals in tectonic shear zones. Tschermaks Min. Petr. Mitt. 25, 219242.CrossRefGoogle Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Paper 391C, 131.Google Scholar
Schwaighofer, B. (1976) Mineralogisch-chemische Umwandlungen bei der Verwitterung pyroklastischer Gesteine auf Teneriffa (Kanarische Inseln). Geoderma 16, 285315.CrossRefGoogle Scholar
Schwaighofer, B. (1976) Die Verwitterung basischer Vulkanite. Österr. Akad. d. Wiss., Math.-naturw. Kl., Denkschr. 119, Wien.CrossRefGoogle Scholar
Schwertmann, U. (1959) Die fraktionierte Extraktion der freien Eisenoxide in Böden, ihre mineralogischen Formen und ihre Entstehungsweisen. Z. Pflanzenernähr., Düng., Bodenkunde 84, 194204.CrossRefGoogle Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat- Lösung. Z. Pflanzenern Bodenkunde 105, 194202.CrossRefGoogle Scholar
Schwertmann, U. (1969) Die Bildung von Eisenoxiden. Fortschr. Miner. 46, 274285.Google Scholar
Sieffermann, G. & Millot, G. (1969) Equatorial and tropical weathering of recent basalts from Cameroon: allophanes, halloysite, metahalloysite, kaolinite and gibbsite. Proc. Int. Clay Conf. Tokyo 1, 417430.Google Scholar
Wilke, B.M., Schwertmann, U. & Murad, E. (1978) An occurrence of polymorphic halloysite in granite saprolite of the Bayerischer Wald, Germany. Clay Miner. 13, 6777.CrossRefGoogle Scholar