Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T22:16:28.426Z Has data issue: false hasContentIssue false

Structural heterogeneity of pillared fluorohectorite: an XRD, HRTEM and EDX study

Published online by Cambridge University Press:  09 July 2018

S. Witkowski
Affiliation:
Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
K. Dyrek
Affiliation:
Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
Z. Sojka
Affiliation:
Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
G. Djéga-Mariadassou
Affiliation:
Université Pierre et Marie Curie, Laboratoire de Reactivité de Surface, CNRS URA 1106, 75252 PARIS Cedex 05, France
J. Fijał
Affiliation:
Department of Mineralogy and Geochemistry, Academy of Mining and Metallurgy, Al. Mickiewicza 30, Kraków, Poland
Z. Kłapyta
Affiliation:
Department of Mineralogy and Geochemistry, Academy of Mining and Metallurgy, Al. Mickiewicza 30, Kraków, Poland

Abstract

Different types of heterogeneity were shown in F/OH/A1 pillared fluorohectorite by combined use of X-ray and selected area electron diffraction, high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray (EDX) methods: interlayer distances heterogeneity (layer stacking order imperfections); domain structure heterogeneity; and phase heterogeneity (formation of secondary phases from pillaring solutions). The role of ageing of pillaring solutions and pillared smectites was revealed and discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akitt, J.W. & Farthing, A. (1981a) Aluminium-27 nuclear magnetic resonance studies of the hydrolysis of aluminium (III). Part 3. Stopped-flow kinetic studies. J. Chem. Soc, Dalton Trans. 7, 16091614.Google Scholar
Akitt, J.W. & Farthing, A. (1981b) Aluminium-27 nuclear magnetic resonance studies of the hydrolysis of aluminium (III). Part 4. Hydrolysis using sodium carbonite. J. Chem. Soc, Dalton Trans. 7, 16171623.Google Scholar
Bailey, S.W., Brindley, G.W., Kodama, H. & Martin, R.T. (1982) Report of the Clay Minerals Society Nomenclature Committee for 1980-1981. Clays Clay Miner. 30, 7678.Google Scholar
Barrer, R.M. & Brummer, K. (1963) Relations between partial ion exchange and interlamellar sorption in alkylammonium montmorillonites. Trans. Farad. Soc. 59, 959968.Google Scholar
Barrer, R.M. & Jones, D.L. (1971) Chemistry of soil minerals. Part XI. Ion exchange and ion fixation in synthetic fluorohectorites. J. Chem. Soc. (A), 503-508.Google Scholar
Bottero, J.Y., Marchal, J.P., Poirier, J.E. & Flessinger, F. (1982) 27A1 studies of partially neutralized dilute solutions of aluminum chloride. Bull. Soc. Chim. Fr. 11-12, 439444.Google Scholar
Brindley, G.W. & Sempels, R.E. (1977) Preparation and properties of some hydroxy-aluminium beidellites. Clay Miner. 12, 229237.CrossRefGoogle Scholar
Bulghakov, O.V. & Antipina, T.V. (1967) Rentgenostrukturnyj analiz produktov vzaimodejstvija ftoristovodorodnoj kisloty s okisju aluminija. Zhurn. Fiz. Khimii. 41, 31203127.Google Scholar
Calas, G., Bassett, W.A., Petian, J., Steinberg, M., Tchoubar, D. & Zarka, A. (1984) Some mineralogical applications of synchrotron radiation. Phys. Chem. Miner. 11, 1736.CrossRefGoogle Scholar
Fijał, J. (1988) Physico-chemical studies of the structure of fluor-hydroxy and hydroxy-aluminum polycations as complexes for cross-linking of smectites. Miner. Polon. 19, 4162.Google Scholar
Fijał, J. (1989) A new infrared spectroscopic method of identification of hydroxy-aluminium and fluor-hydroxyaluminium polymers—complexes for smectite pillaring. Miner. Polon. 20, 4556.Google Scholar
Fijał, J. (1991) Modification of surface properties of smectite with fluorine compounds and polymeric hydroxy-metal complexes. Zesz. Nauk AGH, 50, 1196.Google Scholar
Fijał, J. & Shabtai, J. (1985) Synthesis and characterization of cross-linked fluor-hydroxy-aluminum montmorillonite and fluorohectorite. Abstracts 8th Int. Clay Conf. Denver, 67.Google Scholar
Fijał, J., Iclapyta, Z., Dyrek, K., Witkowski, S. & Djegamariadassou, G. (1991) IR, XRD and HRTEM study of heterogeneity of pillared smectites. Proc. 7th Euroclay Conf. Dresden ‘ 91, 347-352.Google Scholar
Fripiat, J.J. (1988) High resolution solid state NMR study of pillared clays. Catal. Today, 2, 281296.Google Scholar
Pinnavaia, T.J. (1983) Intercalated clay catalysts. Science 220, 365-371.CrossRefGoogle ScholarPubMed
Pinnavaia, T.J., TZON M-S., Landau, S.D. & RAYTHAIA Rasik, H. (1984) On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum. J. Mol. Cat. 27, 195212.Google Scholar
Pinnavaia, T.J., Landau, S.D.,TZON M-S. & Johnson, I.D. (1985) Layer cross-linking in pillared clays. J. Am. Chem. Soc. 107, 72227224.Google Scholar
Plee, D., Borg, F., Gatineau, L. & Fripiat, J.J. (1985) High resolution solid state of pillared clays. J. Am. Chem. Soc. 107, 23622369.Google Scholar
Shabtai, J. (1979) Zeolites and cross-linked silicates as media for selective catalysis. Chim. Ind., 61, 734741.Google Scholar
Stol, R.J., Van Helden, A.K. & De Bruyn, P.L. (1976) Hydrolysis-precipitation studies of aluminum (III) solutions. 2. A kinetic study and model. J. Coll. Interface Sci. 57, 115131.CrossRefGoogle Scholar
Suquet, H. & Pezerat, H. (1987) Parameters influencing layer stacking types in saponite and vermiculite: A review. Clays Clay Miner. 35, 353362.Google Scholar
Tchoubar, D., Boitero, J.Y., Axelos, M.A.V. & Quinne, P. (1987) First step of growth process on aluminium and iron hydroxide solutions. Abstracts. 6th Meeting European Clay Groups, Seville, 521.Google Scholar
Vaughan, D.E.W., Lussier, R.J. & Magee, J.S. (1981) Pillared interlayered clay products. US Patent 4,271,043.Google Scholar