Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-14T10:15:43.153Z Has data issue: false hasContentIssue false

Short-Chain alkylammonium montmorillonites and alcohols: gas adsorption and immersional wetting

Published online by Cambridge University Press:  09 July 2018

R. Malberg
Affiliation:
Institut für anorganische Chemie der Universität Kiel, Olshausenstraße 40, D-2300 Kiel, FRG
I. Dékány
Affiliation:
Institute of Colloid Chemistry, Attila Jószef University, Szeged, Hungary
G. Lagaly
Affiliation:
Institut für anorganische Chemie der Universität Kiel, Olshausenstraße 40, D-2300 Kiel, FRG

Abstract

Short-chain alkylammonium derivatives of montmorillonite (< 8 or 10 C atoms in the alkyl chain) adsorb alcohols in the micropores between the alkylammonium ions. The external surface area and the micropore volume are derived from comparison plots of ethanol and butanol adsorption isotherms. The micropore volume varies between ∼0 (decylammonium derivative) and 100µl/g (methylammonium derivative); the external surface area determined by ethanol and butanol gas adsorption is about 50 m2/g, and is almost independent of the alkyl chain length. In contact with the alcohols, the alkylammonium ions in the interlayer space remain in h1 or h2 arrangement (monolayers or bilayers of flat-lying alkylammonium ions); on the external surface they move into an upward position. The heat of immersion decreases strongly with increasing alkyl chain length to a minimum for decylammonium ions, the variation being very similar for ethanol, butanol, hexanol, octanol and decanol. Immersion in ethanol increases the external surface area at the expense of the internal surface area. In butanol and longer alcohols this area remains unchanged. The increase of the external surface is related mainly to changes in the less ordered regions around the core of the crystals which consists of coherent silicate layers. The heat of wetting is ∼ 110 mJ/m2 (external and internal surfaces). The integral enthalpy of adsorption of butanol, 40–50 kJ/mol, is independent of the alkyl chain length (nc ≤ 8).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, R.M. & McLeod, D.M. (1955) Activation of montmorillonite by ion-exchange and sorption complexes of tetra-alkylammonium montmorillonite. Trans. Farad. Soc., 51, 1290–1300.Google Scholar
Barrer, R.M. & Kelsey, K.E. (1961) Thermodynamics of interlamellar complexes, part 1,2. Trans. Farad. Soc., 57, 452–462, 625640.Google Scholar
Barrer, R.M. & Millington, A.D. (1967) Sorption and intracrystalline porosity in organo-clays. J. Coll. Inter. ScL, 25, 359–372.Google Scholar
Barrer, R.M. (1986) Expanded clay minerals: A major class of molecular sieves. J. Inclusion Phenomena, 4, 109–119.Google Scholar
Brown, C.E. & Hall, P.G. (1971) Physical adsorption of gases on graphite. Trans. Farad. Soc., 35583564.Google Scholar
Davies, M. & Kybett, B. (1965) Sublimation and vaporisation heats of long chain alcohols. Trans. Farad. Soc., 61, 1608–1617.Google Scholar
Dekany, I., Szanto, F., Nagy, L.G. & Schay, G. (1983) Sorption and immersional wetting properties of palygorskite and its hexadecylpyridinium derivatives. J. Coll Inter. Sci., 93, 151–161.Google Scholar
Dekany, I., Szanto, F. & Nagy, L.G. (1988) Wetting and adsorption on organophilic illites and swelling montmoriilonites in methanol-benzene mixtures. Coll. Polymer Sci., 266, 82–96.Google Scholar
Gregg, S.J. & Sing, K.S.W. (1982) Adsorption, Surface Area and Porosity.Academic Press, London. Hemminger, W. & Hohne, G. (1979) Grundlagen der Kalorimetrie. Verlag Chemie, Weinheim.Google Scholar
Kruse, H.-H. & Lagaly, G. (1988) Eine automatische Apparatur zu volumometrischen Gasadsorptionsmes- sungen. GIT Fachzeitschrift fur das Labor,, 32, 1096–1100.Google Scholar
Kruse, H.-H., Beneke, K. & Lagaly, G. (1989) Gas adsorption by a crystalline silicic acid. Coll. Polymer Sci.(submitted).Google Scholar
Lagaly, G. & Weiss, A. (1969) Zur van-der-Waals-Wechselwirkung in n-Dodecylammonium-Schichtsilicaten. Z. Naturforsch., 24b, 10571058.Google Scholar
Lagaly, G. & Weiss, A. (1971) Anordnung und Orientierung kationischer Tenside auf Silicatoberflachen. Teil IV Anordnung von n-Alkylammoniumionen bei niedrig geladenen Schichtsilicaten. KolloidZ.Z. Polymere, 243, 48–55.Google Scholar
Lagaly, G. (1976) Kink-block and gauche-block struktures of bimolecular films. Angew. Chem. Intern., 15, 575586.Google Scholar
Lagaly, G. (1981a) Inorganic layer compounds - phenomena of interface reactions with organic compounds. Naturwissenschaften, 68, 82–88.Google Scholar
Lagaly, G. (1981b) Characterization of clays by organic compounds. Clay Miner., 16, 1–21.CrossRefGoogle Scholar
Lagaly, G. & Witter, R. (1982) Clustering ofliquid molecules on solid surfaces. Ber. Bunsenges. physik. Chemie, 86, 74–80.Google Scholar
Lee, J.A. & Newnham, C.E. (1976) Assessment of microporosity in Mn02. J. Coll. Sci., 56, 391–394. McCleelan A .& Harnsberger, H.F. (1967) Cross sectional areas of molecules adsorbed on solid surfaces. J. Coll Sci., 23, 577–599.Google Scholar
Mortland, M.M. & Berkheiser, V. (1976) Triethylene diamine clay complexes as matrices for adsorption and catalytic reactions. Clays Clay Miner., 24, 61–63.CrossRefGoogle Scholar
Samii, A.M. & Lagaly, G. (1987) Adsorption of nuclein bases on smectites. Proc. Int. Clay Conf. Denver,, 343351.Google Scholar
Slabaugh, W.H. & Kennedy, G.H. (1963) Adsorption of water and methanol by organic complexes of montmorillonites. J. Coll. Sci., 18, 337–342.CrossRefGoogle Scholar
Slabaugh, W.H. & Carter, L.S. (1968) The hydrophilic-hydrophobic character of organomontmorillonites. J. Coll. Inter. Sci., 27, 235–238.Google Scholar
Stul, M.S. & Van Leemput, L. (1982) The texture of montmorillonites as influenced by the exchangeable inorganic cation and the drying method. I. External surface area related to the stacking units of the aggregates. Surf. Tech., 16, 89–100.Google Scholar
Stul, M.S., Van Leemput, L., Rutsaert, M. & Uytterhoeven, J.B. (1983) Adsorption of organic vapors on alkylammonium montmorillonites. J. Coll. Inter. Sci., 92, 222–231.CrossRefGoogle Scholar
Topic, M. Micale, F.J., Leidheiser, H. & Zettlemoyer, A.C. (1974) Calorimeter for measuring heats of wetting of solids in organic media. Rev. Sci. Instrum., 45, 487–490.Google Scholar
Vali, H. & Koster, H.M. (1986) Expanding behaviour, structural disorder, regular and random irregular interstratification of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy. Clay Miner., 21, 827–859.CrossRefGoogle Scholar
Westfehling, R. (1988) Thesis, Kiel Univ., FRG.Google Scholar
Zettlemoyer, A.C., Young, G. J. & Chessick, J. J. (1953) A thermistor calorimeter for heats of wetting. J. Phys. Chem., 57, 649–652.Google Scholar
Zettlemoyer, A.C. (1965) Immersional wetting of solid surfaces. Pp. 139148 in: Chemistry and Physics of Interfaces. Amer. Chem. Soc., Washington.Google Scholar