Skip to main content Accessibility help
×
Home

Quartz cementation inhibited by crestal oil charge: Miller deep water sandstone, UK North Sea

  • A. M. E. Marchand (a1) (a2), R. S. Haszeldine (a2), C. I. Macaulay (a2), R. Swennen (a1) and A. E. Fallick (a3)...

Abstract

In the Miller Field, diagenetic quartz abundance, isotopic compositions and salinities of quartz-cementing fluids display a distinct pattern which is related to the structural depth of the reservoir sandstones. Quartz cement volumes increase from the crest of the field (average 6.0±1.5%) towards the flanks of the field (average 13.2±2.1%) and directly reduce reservoir porosity. By integrating petrographic observations with results of fluid inclusion measurements and O isotope analyses of diagenetic quartz, the pattern of quartz cementation is seen to be related to the reservoir filling history. Oil filled the crest of the reservoir first and prevented extensive quartz cementation. At greater depth in the reservoir oil zone, quartz overgrowths continued to precipitate until inhibited by the developing oil column. Oxygen isotope compositions of diagenetic quartz imply that quartz cement continued to precipitate in the water zone of the reservoir up to the present day.

Copyright

Corresponding author

References

Hide All
Aplin, A.C., Warren, E.A., Grant, S.M. & Robinson, A.G. (1993) Mechanisms of quartz cementation in North Sea reservoir sandstones: constraints from fluid composition. Pp. 7-22 in: Diagenesis and Basin Development (Horbury, A. & Robinson, A., editors). Am. Assoc. Petrol. Geol. Stud. Geol., 36.
Baldwin, B. & Butler CO. (1985) Compaction curves. Am. Assoc. Petr. Geol. Bull. 69, 69622.
Brint, J.F., Hamilton, P.J., Haszeldine, R.S., Fallick, A.E. & Brown, S. (1991) Oxygen isotope analysis of diagenetic quartz overgrowths from the Brent sands: A comparison of two preparation methods. J. Sed. Pet. 61, 61527.
Clayton, R.N., Friedman, I., Graf, D.L., Mayeda, T.K., Meents, W.F. & Shimp, N.F. (1966) The origin of saline formation waters. J. Geophys. Res. 71, 713869.
Egeberg, P.K. & Aagaard, P. (1989) Origin and evolution of formation waters from oil fields on the Norwegian shelf. Appl. Geochem. 4, 4131.
Emery, D., Smalley, P.C. & Oxtoby, N.H. (1993) Synchronous oil migration and cementation in sandstone reservoirs demonstrated by quantitative description of diagenesis. Phil. Trans. R. Soc. London, 344, 344115.
Friedman, I. & O'Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest In: Data of Geochemistry, 6th edition (Fleischer, M., editor). US Geol. Survey Prof. Paper, 440-kk.
Garland, C.A. (1993) Miller Field: reservoir stratigraphy and its impact on development. Pp. 401-414 in: Petroleum Geology of Northwest Europe: Proc. 4th Conf. (Parker, J.R., editor). Geological Society, London.
Gluyas, J.G., Robinson, A.G., Emery, D., Grant, S.M. & Oxtoby, N.H. (1993) The link between petroleum emplacement and sandstone cementation. Pp. 1395-1402 in: Petroleum Geology of Northwest Europe: Proc. 4th Conf. (Parker, J.R., editor). Geological Society, London.
Hamilton, P.J., Fallick, A.E., Macintyre, R.M. & Elliott, S. (1987) Isotopic tracing of the provenance and diagenesis of Lower Brent Group sands, North Sea. Pp. 939-949 in: Petroleum Geology of Northwest Europe (Brooks, J. & Glennie, K., editors). Graham & Trotman, London.
Hanor, I.S. (1980) Dissolved methane in sedimentary brines: Potential effect on the PVT properties of fluid inclusions. Econ. Geol. 75, 75603.
Haszeldine, R.S. & Osborne, M. (1993) Fluid inclusion temperatures in diagenetic quartz reset by burial: implications for oilfield cementation. Pp. 35-46 in: Diagenesis and Basin Development (Horbury, A. & Robinson, A., editors). Am. Assoc. Petrol. Geol. Stud. Geol. 36.
Hudson, J.D. & Andrews, JE. (1987) The diagenesis of the Great Estuarine Group, Middle Jurassic, Inner Hebrides, Scotland. Pp 259-276 in: Diagenesis of Sedimentary Sequences (Marshall, J.D., editor). Blackwell, Oxford, UK.
Lee, M. & Savin, S.M. (1985) Isolation of diagenetic overgrowths on sand grains for oxygen isotope analysis. Geochim. Cosmochim. Acta, 49, 49497.
McBride, E.F. (1963) A classification of common sandstones. J. Sed. Pet. 33, 33664.
McLaughlin, O.M., Haszeldine, R.S., Fallick, A.E. & Rogers, G. (1994) The case of the missing clay, aluminium loss and secondary porosity, South Brae oilfield, North Sea. Clay Miner. 29, 29651.
McLaughlin, O.M., Haszeldine, R.S. & Fallick, A.E. (1996) Quartz diagenesis in layered fluids in the South Brae oilfield, North Sea. SEPM Spec. Publ. 55, 55103.
Osborne, M. & Haszeldine, R.S. (1993) Evidence for resetting of fluid inclusion temperatures from quartz cements in oilfield. Marine Petrol. Geol. 10, 10271.
Rooksby, S.K. (1991) The Miller Field, blocks 16/7b, 16/8b UK North Sea. Pp. 159-164 in: United Kingdom Oil and Gas Fields, 25 years Commemorative vol. (Abbotts, I.L., editor). Geological Society Memoir 14.
Saigal, G.C., Bjørlykke, K. & Larter, S. (1992) The effects of oil emplacement on diagenetic processes - examples from the Fulmar reservoir sandstones, central North Sea. Am. Assoc. Petr. Geol. Bull. 76, 761024.
Shackleton, N.J. & Kennett, J.P. (1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon analyses in DSDP sites 277, 279, 281. Pp. 653-659 in: Initial Report DSDP 24 (Kennett, J.P. & Howtz, R.E., editors), Washington.
Sharp, Z.D. (1990) A laser-based microanalytical method for the in-situ determination of oxygen isotope ratios in silicates and oxides. Geochim. Cosmochim. Acta, 54, 541353.
Smalley, P.C. & Warren, E.A. (1994) The Miller Field. P. 52 in: North Sea Formation Waters Atlas (Warren, E.A. & Smalley, P.C., editors). Geological Society London, Memoir 15.
Suchecki, R.N. & Land, L.S. (1983) Isotopic geochemistry of burial-metamorphosed volcanogenic sediments, Great Valley sequence, California. Geochim. Cosmochim. Acta, 47, 471487.
Thermie (1994) Miller field demonstration. P. 42 in: Thermie Reservoir Geochemistry Project report. Newcastle Research Group in Fossil Fuels and Environmental Geochemistry (University of Newcastle, UK), BP Exploration (Sunbury-on- Thames, UK), Geolab Nor (Trondheim, Norway), Institut Français du Pétrole (France), Department of Geology (University of Manchester, UK).
Turner, C.C., Cohen, J.M., Connell, E.R. & Cooper, D.M. (1987) A depositional model for the South Brae oilfield. Pp. 853-864 in: Petroleum Geology of Northwest Europe (Brooks, J. & Glennie, K., editors). Graham & Trotman, London.
Walderhaug, O. (1990) A fluid inclusion study of quartzcemented sandstones from offshore mid-Norway–possible evidence for continued quartz cementation during oil emplacement. J. Sed. Pet. 60, 60302.
Walderhaug, O. (1994) Temperatures of quartz cementation in Jurassic sandstones from the Norwegian continental shelf–evidence from fluid inclusions. J. Sed. Res. A64, 64311.
Wilkinson, M., Crowley, S.F. & Marshall, J.D. (1992). Model for the evolution of oxygen isotope ratios in the porefluids of mudrocks during burial. Marine Petrol. Geol. 9, 998.
Worden, R.H., Warren, E.A., Smalley, P.C., Primmer, T.J. & Oxtoby, N.H. (1995) Discussion of ‘Evidence for resetting of fluid inclusion temperatures from quartz cements in oilfields’ by Osborne and Haszeldine (1993). Marine Petrol. Geol. 12, 12566.
Worden, R.H. (1996) Controls on halogen concentrations in sedimentary formation waters. Mineral. Mag. 60, 60259.
Worden, R.H., Oxtoby, N.H. & Smalley, P.C. (1998) Can oil emplacement prevent quartz cementation in sandstones. Petrol. Geosci. 4, 4129.

Keywords

Related content

Powered by UNSILO

Quartz cementation inhibited by crestal oil charge: Miller deep water sandstone, UK North Sea

  • A. M. E. Marchand (a1) (a2), R. S. Haszeldine (a2), C. I. Macaulay (a2), R. Swennen (a1) and A. E. Fallick (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.