Skip to main content Accessibility help
×
Home

Oxidative decarboxylation of isocitric acid in the presence of montmorillonite

  • A. Naidja (a1) and B. Siffert (a1)

Abstract

Isocitric acid oxidative decarboxylation was realized in the absence and in the presence of homoionic Na+-, Mn2+-, and Cu2+-montmorillonite. The catalytic activity of the clay depends upon the nature of the interlayer exchangeable cation. Isocitric acid is transformed into α-ketoglutaric acid under the action of the clay mineral saturated with Na+ cations which do not form a complex with the isocitrate anion. Nevertheless, the reaction rate is very much lower than in the presence of the enzymatic system (isocitrate dehydrogenase enzyme and nicotinamide adenine dinucleotide phosphate coenzyme). The reaction mechanism in the presence of clay is given showing the different steps of the transformation.

Copyright

References

Hide All
Bellamy, L.J. (1975) Carboxylic acid. Pp. 183-200 in: The Infra-Red Spectra of Complex Molecules., 1, 3rd edition, Chapman & Hall, London.
Blanchard-Desce, M., Fosset, B., Guyot, F., Julien, L. & Placin, S. (1987) Chimie Organique Experimentale,pp. 206-208. Herman, Paris.
Boyd, S.A. & Mortland, M.M. (1985) Manipulating the activity of immobilized enzymes with different organo-smectite complexes. Experientia, 12, 1564–1566.
Boyd, S.A. & Mortland, M.M. (1986) Selective effects of smectite-organic complexes on the activities of immobilized enzymes. J. Mol. Cat., 34, 1–8.
Brack, A. (1976) Polymerisation en phase aqueuse d'acides amines sur les argiles. Clay Miner., 11, 117–120.
Bzik, S., Church, F., Lawless, J., Levy, N., Mazzurco, J. & Mortland, M.M. (1983) The adsorption of biomonomers on to homoinic clays. NASA Conf. Pub., 2276, p. 53.
Cairns-Smith, A.G. (1974) Genes made of day. New Scientist, 64, 274–276.
Cairns-Smith, A.G. (1985) The first organisms. Scientific Am., 252, 74–82.
Cairns-Smith, A.G. & Hartman, H. (19S6) Clay Minerals and the Origin of Life, pp. 130137. Cambridge Univ., Cambridge.
Chottard, G. & Bolard, J. (1976) Etude vibrationnelle en solution de la complexation de Tacide isocitrique par quelques ions metalliques bivalents. Bull. Soc. Chim. Fr., 742745.
Colthup, N.B., Daly, L.H. & Wiberley, S.E. (1964) Introduction to Infrared and Raman Spectroscopy, p. 140. Academic Press, New York.
Coyne, L.M. (1985) A possible energetic role of mineral surfaces in chemical evolution. Origin of Life, 15, 161206.
De Koke, P.M.T., Donkersloot, M.C.A., Mhulendijks, G.W.M. Bastiaansen, L.A.M., Kanters, J.A. Buck, H.M. (1986) Stereoselective hybride uptake in modelsystems related to the redox NAD+/NADH. Tetrahedron. J., 42, 941–960.
Donkersloot, M.C.A. & Buck, H.M. (1981) The hybride-donation reaction of reduced nicotinamide-adenine- dinucleotide. I. Calculation and analogue reactions with cyclopropene tropilidine, and 1,4-dihydropyridine as hybride donors and the cyclopropenium cations as acceptor. J. Am. Chem. Soc., 103, 6549–6554.
Grzynowski, A.K., Tate, S.S. & Datta, S.P. (1970) Magnesium and manganese complexes of citric and isocitric acids. J. Chem. Soc A, 241245.
Kessaissia, S., Siffert, B. & Donnet, J.B. (1980) Synthese des peptides. Preparation de Tacide hyppurique par reaction du complexe montmorillonite-glycine avec Tacide benzoxque. Clay Miner., 15, 383–392.
Li, N.C., Westfall, W.M., Lindenbaum, A., White, J.M. & Schubert, J. (1957) Manganese-54, uranium-233 and cobalt-60 complexes of some organic acids. J. Am. Chem. Soc., 79, 5864–5870.
Louisot, P. (1983) Energetique cellulaire. P. 756 in: Biochimie Generale et Medicate, Structural, Metabolique, Semeiologique. Simep ed., Paris.
Metzler, D. (1977) Biochemistry, The Chemical Reactions of Living Cell, Pp. 303350. Intern. Edition, London.
Mortland, M.M. (1984) Deamination of glutamic acid by pyridoxal phosphate-Cu-smectite catalysts. J. Mol Cat. 27, 143155.
Naidja, A. (1988) Action catalytique des argiles de type smectites dans les reactions biochimiques. These de Doctorat, Univ. de Haute Alsace, Mulhouse.
Naidja, A. & Siffert, B. (1989) Glutamic acid deamination in the presence of montmorillonite. Clay Miner., 24, 649–661.
Paecht-Horowitz, M., Berger, J. & Katchalsky, A. (1970) The possible role of day in prebiotic synthesis. Nature, 228, 636.
Paecht-Horowitz, M. (1974) The possible role of clays in prebiotic peptides synthesis. Origin of Life, 5, 173–187.
Petit-RaMel, M.M., Chottard, G. & Bollard, J. (1976) Determination potentiometrique des constantes de stabilite des complexes de l'cide (d _, 1 _) isocitrique avec le magnesium II, le manganese II et le cobalt II. J. Chim. Phys., 73, 181–185.
Prescott, S.G. & Dunn, C.G. (1959) Industrial Microbiology, 3rd ed. 577 pp. McGraw-Hill, New York.
Roberts, J.D. & Caserio, M.C. (1968) Chimie Organique Moderne, 312 pp. Ediscience, Paris.
Siffert, B. & Naidja, A. (1987) Decarboxylation catalytique de Tacide oxaloacetique en presence de montmorillonite. Clay Miner., 22, 435–446.
Souchay, P. (1948) Mesures de pH en fonction de la dilution dans les solutions de sels purs. Remarques sur I'hydrolyse des carbonates. Bull. Soc. Chim. Fr., 463468.

Related content

Powered by UNSILO

Oxidative decarboxylation of isocitric acid in the presence of montmorillonite

  • A. Naidja (a1) and B. Siffert (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.