Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T15:44:03.738Z Has data issue: false hasContentIssue false

Novel nuclear magnetic resonance techniques for the study of quadrupolar nuclei in clays and other layered materials

Published online by Cambridge University Press:  09 July 2018

J . Rocha*
Affiliation:
Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
C. M. Morais
Affiliation:
Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal Laboratoire Catalyse et Spectrochimie (CNRS UMR 6506), ENSICAEN, 14050 Caen, France
C. Fernandez
Affiliation:
Laboratoire Catalyse et Spectrochimie (CNRS UMR 6506), ENSICAEN, 14050 Caen, France
*
*E-mail: rocha@dq.ua.pt

Abstract

The main developments taking place in Nuclear Magnetic Resonance Spectroscopy (NMR) of quadrupolar (spin I > 1/2) nuclei with half integer spins in solids, particularly clays and other layered materials, have been reviewed. The advent of Multiple-Quantum (MQ) Magic-Angle Spinning (MAS) NMR spectroscopy has been a step-change development to the studies of quadrupolar nuclei in solids. It is now possible to record high-resolution spectra of important nuclei, such as 11B, 17O, 23Na, 27Al and 69,71Ga, in synthetic and natural clays. Since its introduction in 1995 MQMAS NMR has evolved considerably and, at present, a range of very useful related techniques are available and have been reviewed, as has the current situation with regard to applications to clays and other layered materials.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, X., Deng, F., Dong, J., Chen, L. & Ye, C. (2002) Stability of layered sodium disilicate during hydration process as studied by multinuclear solid state NMR spectroscopy. Journal of Physical Chemistry, 106, 92379244.Google Scholar
Amoureux, J.P. & Fernandez, C. (1998) Triple, quintuple and higher order multiple quantum MAS NMR of quadrupolar nuclei. Solid State Nuclear Magnetic Resonance, 10, 211223.CrossRefGoogle ScholarPubMed
Amoureux, J.P. & Pruski, M. (2002) Advances in MQMAS. Pp. 226251 in: Encyclopedia of Nuclear Magnetic Resonancevol. 9(Grant, D.M. & Harris, R.K., editors). Wiley, Chichester, UK.Google Scholar
Amoureux, J.P., Fernandez, C. & Dumazy, Y. (1995) A useful tool for the elaboration of new solid-state experiments: PULSAR. Journal de Chimie Physique, 2, 19391949.Google Scholar
Amoureux, J.P., Fernandez, C. & Steuernagel, S. (1996) Z filtering in MQMAS NMR. Journal of Magnetic Resonance A, 123, 116118.CrossRefGoogle ScholarPubMed
Amoureux, J.P., Morais, C., Trebosc, J., Rocha, J. & Fernandez, C. (2003) I- STMAS, a new highresolution solid-state NMR method for half-integer quadrupolar nuclei. Solid State Nuclear Magnetic Resonance, 23, 213223.Google Scholar
Ashbrook, S.E. & Wimperis, S. (1998) Multiple-quantum cross-polarization in MAS NMR of quadrupolar nuclei. Chemical Physics Letters, 288, 509517.Google Scholar
Ashbrook, S.E. & Wimperis, S. (2000) Multiple-quantum cross-polarization and two-dimensional MQMAS NMR of quadrupolar nuclei. Journal of Magnetic Resonance, 147, 238248.CrossRefGoogle ScholarPubMed
Ashbrook, S.E. & Wimperis, S. (2001) Novel twodimensional methods that combine single-quantum cross-polarization and multiple-quantum MAS of quadrupolar nuclei. Chemical Physics Letters, 340, 500508.CrossRefGoogle Scholar
Ashbrook, S.E. & Wimperis, S. (2002) High-resolution NMR spectroscopy of quadrupolar nuclei in solids: Satellite-transition MAS with self-compensation for magic-angle Misset. Journal of the American Chemical Society, 124, 1160211603.CrossRefGoogle ScholarPubMed
Ashbrook, S., McManus, J., MacKenzie, K.J.D. & Wimperis, S. (2000) Multiple-quantum and crosspolarized 27Al MAS NMR of mechanically treated mixtures of kaolinite and gibbsite. Journal of Physical Chemistry B, 104, 64086416.Google Scholar
Ashbrook, S.E., Antonijevic, S., Berry, A.J. & Wimperis, S. (2002) Motional broadening: an important distinction between multiple-quantum and satellitetransition MAS NMR of quadrupolar nuclei. Chemical Physics Letters, 364, 634642.Google Scholar
Bak, M., Rasmussen, J.T. & Nielsen, N.C. (2000) SIMPSON: A general simulation program for solid-state NMR spectroscopy. Journal of Magnetic Resonance, 147, 296330.CrossRefGoogle Scholar
Brown, S.P. & Wimperis, S. (1997) Two-dimensional multiple-quantum MAS NMR of quadrupolar nuclei: A Comparison of Methods. Journal of Magnetic Resonance, 128, 42–6.CrossRefGoogle Scholar
Brown, S.P., Heyes, S.J. & Wimperis, S. (1996) Twodimesional MAS multiple-quantum NMR of quadrupolar nuclei. Removal of inhomogeneous secondorder broadening. Journal of Magnetic Resonance A, 119, 280284.Google Scholar
Caldarelli, S. & Ziarelli, F. (2000) Spectral editing of solid-state MAS NMR spectra of half-integer quadrupolar nuclei. Journal of the American Chemical Society, 122, 1201512016.CrossRefGoogle Scholar
Chmelka, B.F, Mueller, K.T., Pines, A., Stebbins, J., Wu, Y. & Zwanziger, J.W. (1989) Oxygen-17 NMR in solids by dynamic-angle spinning and double-rotation. Nature, 339, 4243.CrossRefGoogle Scholar
Delevoye, L., Fernandez, C., Morais, C.M., Amoureux, J.P., Montouillout, V. & Rocha, J. (2003) Doubleresonance decoupling for resolution enhancement of 31P solid-state MAS and 27Al→31P MQHETCOR NMR experiments. Solid State Nuclear Magnetic Resonance, 21, 6170.Google Scholar
Delevoye, L., Robert, J.L. & Grandjean, J. (2003) 23Na 2D 3QMAS NMR and 29Si, 27Al MAS NMR investigation of Laponite and synthetic saponites of variable interlayer charge. Clay Minerals, 38, 6369.CrossRefGoogle Scholar
Ding, S. & McDowell, C.A. (1997) Shaped-pulse excitation in multi-quantum magic-angle spinning spectroscopy of half-integer quadrupole spin systems. Chemical Physics Letters, 270, 8186.CrossRefGoogle Scholar
Fenzke, D., Freude, D., Frühlich, T. & Haase, J. (1984) NMR intensity measurements of half-integer quadrupolar nuclei. Chemical Physics Letters, 111, 171175.CrossRefGoogle Scholar
Fernandez, C., Lang, D.P, Amoureux, J.P. & Pruski, M. (1998) Measurement of heteronuclear dipolar interaction between quadrupolar and spin 1/2 nuclei by MQ REDOR NMR. Journal of the American Chemical Society, 120, 26722673.Google Scholar
Fernandez, C., Morais, C., Rocha, J. & Pruski, M. (2002) High-resolution correlation spectra between 31P and 27Al in microporous aluminophosphates. Solid State Nuclear Magnetic Resonance, 21, 6170.CrossRefGoogle Scholar
Fontenot, C.J., Wiench, J.W., Schrader, G.L. & Pruski, M. (2002) 17O MAS and 3QMAS NMR investigation of the crystalline V2O5 and layered V2O5.nH2O gels. Journal of the American Chemical Society, 124, 84358444.Google Scholar
Frydman, L. & Harwood, J.S. (1995) Isotropic spectra of half-integer quadrupole spins from bidimensional magic-a ngle-sp inning NMR. Journa l of the American Chemical Society, 117, 53675368.Google Scholar
Gan, Z. (2000) Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and MAS. Journal of the American Chemical Society, 122, 32423243.Google Scholar
Goldbourt, A., Madhu, P.K. & Vega, S. (2000) Enhanced conversion of triple to single-quantum coherence in the triple-quantum MAS NMR spectroscopy of spin- 5/2 nuclei. Chemical Physics Letters, 320, 448456.CrossRefGoogle Scholar
Grey, C.P. & Vega, A.J. (1995) Determination of the quadrupole coupling constant of the invisble aluminum spins in zeolite HY with 1H/27Al. Journal of the American Chemical Society, 117, 82328242.Google Scholar
Gullion, T. (1995) Measurement of dipolar interactions between spin-1/2 and quadrupolar nuclei by rotational- echo, adiabatic-passage, double-resonance NMR. Chemical Physics Letters, 246, 325330.Google Scholar
Gullion, T. & Schaefer, J. (1989) Detection of weak heteronuclear dipolar coupling by rotational-echo double-resona nce nuclear magnetic resonance. Advances in Magnetic Resonance, Vol. 13. Academic Press, San Diego, pp. 57 –83.Google Scholar
Hanaya, M. & Harris, R.K. (1997) Effect of 1Hdecoupling in two-dimensional multiple-quantum MAS NMR spectroscopy of 23Na in a hydrous layered silicate. Solid State Nuclear Magnetic Resonance, 8, 147151.CrossRefGoogle Scholar
Hanaya, M. & Harris, R.K. (1998) Two-dimensional 23Na MQMAS NMR study of layered materials. Journal of Materials Chemistry, 8, 10731079.CrossRefGoogle Scholar
Hayashi, S. (1997) Solid-state NMR study of locations and dynamics of interlayer cations and water in kanemite. Journal of Materials Chemistry, 7, 10431048.Google Scholar
Kanehashi, K. & Saito, K. (2002) Investigation on chemical structure of inorganic matter in coal by 27Al MQMAS and 1H→27Al CP/MQMAS NMR. Journal of the Iron and Steel Institute of Japan, 88, 730735.CrossRefGoogle Scholar
Kentgens, A.P.M. & Verhagen, R. (1999) Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I=3/2 nuclei. Chemical Physics Letters, 300, 435443.CrossRefGoogle Scholar
Lee, S.K. & Stebbins, J.F. (2003) O atom sites in natural kaolinite and muscovite: O-17 MAS and 3QMAS NMR study. American Mineralogist, 88, 493500.CrossRefGoogle Scholar
Lee, S.K., Stebbins, J.F., Weiss, C.A. & Kirkpatrick, R.J. (2003) 17O and 27Al MAS and 3QMAS NMR study of synthetic and natural layer silicates. Chemistry of Materials, 15, 26052613.CrossRefGoogle Scholar
Levitt, M.H. (2001) Spin Dynamics, Basics of Nuclear Magnetic Resonance. John Wiley & Sons, Ltd, Chichester, UK.Google Scholar
Lim, K.H. & Grey, C.P. (1998) Analysis of the anisotropic dimension in the RIACT (II) MQMAS NMR experiment for I=3/2 nuclei. Solid State Nuclear Magnetic Resonance, 13, 101112.Google Scholar
Lim, K.H. & Grey, C.P. (1999) Triple-quantum crosspolarization NMR of 1H/27Al and 19F/23Na spin systems in solids. Chemical Physics Letters, 312, 4556.CrossRefGoogle Scholar
Llor, A. & Virlet, J. (1988) Towards high-resolution technique NMR of more nuclei in solids: sample spinning with time-dependent spinner axis angle. Chemical Physics Letters, 152, 248253.CrossRefGoogle Scholar
Madhu, P.K & Levitt, M.H. (2002) Signal enhancement in the triple-quantum Magic-Angle-Spinning NMR of spin-3/2 in solids: The FAM-RIACT-FAM sequence. Journal of Magnetic Resonance, 155, 150155.CrossRefGoogle ScholarPubMed
Madhu, P.K., Goldbourt, A., Frydman, L. & Vega, S. (1999) Sensitivity enhancement of the MQMAS NMR experiment by fast amplitude modulation of the pulses. Chemical Physics Letters, 307, 4147.Google Scholar
Madhu, P.K., Goldbourt, A., Frydman, L. & Vega, S. (2000) Fast radio-frequency amplitude modulation in multiple-quant um magic-angle-spi nning nuclear magnetic resonance: Theory and experiments. Journal of Chemical Physics, 112, 23772391.Google Scholar
Man, P.P., Klinowski, J., Trokiner, A., Zanni, H. & Papon, P. (1988) Selective and non-selective NMR excitation of quadrupolar nuclei in the solid state. Chemical Physics Letters, 151, 143150.Google Scholar
Marinelli, L., Medek, A. & Frydman, L. (1998) Composite pulse excitation schemes for MQMAS NMR of halfinteger quadrupolar spins. Journal of Magnetic Resonance, 132, 8895.CrossRefGoogle Scholar
Massiot, D. (1996) Sensitivity and lineshape improvements of MQ-MAS by rotor synchronized data acquisition. Journal of Magnetic Resonance A, 122, 240244.Google Scholar
Massiot, D., Touzo, B., Trumeau, D., Coutures, J.P., Virlet, J., Florian, P. & Grandinetti, P.J. (1996) Twodimensional magic-angle-spinning isotropic reconstruction sequences for quadrupolar nuclei. Solid State Nuclear Magnetic Resonance, 6, 7383.CrossRefGoogle ScholarPubMed
Massiot, D., Montouillout, V., Fayon, F., Florian, P. & Bessada, C. (1997) Order-resolved sideband separation in magic-angle-spinning NMR of half-integer quadrupolar nuclei. Chemical Physics Letters, 272, 295300.Google Scholar
Massiot, D., Vosegaard, T., Magneron, N., Trumeau, D., Montouillout, V., Berthet, P., Loiseau, T. & Bujoli, B. (1999) 71Ga NMR of reference GaIV, GaV and GaVI compounds by MAS and QPASS, extension of gallium/aluminium NMR parameters correlation. Chemical Physics Letters, 272, 295300.CrossRefGoogle Scholar
Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé S., Alonso, B., Durand, J.O., Bujoli, B., Gan, Z. & Hoatson, G. (2002) Modelling one and two-dimensional solidstate NMR spectra. Magnetic Resonance in Chemistry, 40, 7076.Google Scholar
Morais, C.M., Lopes, M., Fernandez, C. & Rocha, J. (2003) Assessing the potential of fast amplitude modulation pulses for improving triple-quantum magic angle spinning NMR spectra of half-integer quadrupolar nuclei . Magnet ic Resonanc e in Chemistry (in press).Google Scholar
Pruski, M., Lang, D.P., Fernandez, C. & Amoureux, J.P. (1997) Multiple-qua ntum magic-angle- spinning NMR with cross-polarization: Spectral editing of high-resolution spectra of quadrupolar nuclei. Solid State Nuclear Magnetic Resonance, 7, 327331.Google Scholar
Pruski, M., Baily, A., Lang, D.P., Fernandez, C. & Amoureux, J.P. (1999) Studies of heteronuclear dipolar interactions between spin-1/2 and quadrupolar nuclei by using REDOR during multiple-quantum evolution. Chemical Physics Letters, 307, 3540.Google Scholar
Rocha, J. (1999) Single and triple quantum 27Al MAS NMR study of the thermal transformation of kaolinite. Journal of Physical Chemistry B, 103, 98019804.Google Scholar
Rocha, J., del Arco, M., Rives, V. & Ulibarri, A. (1999) Reconstruction of layered double hydroxides from calcined percursors: a powder XRD and 27Al MAS NMR study. Journal of Materials Chemistry, 9, 24992503.CrossRefGoogle Scholar
Rovnyak, D., Baldus, M. & Griffin, R.G. (2000) Multiplequantum cross polarization in quadrupolar spin systems during Magic-Angle Spinning. Journal of Magnetic Resonance, 142, 145152.CrossRefGoogle ScholarPubMed
Samoson, A. & Lippmaa, E. (1983) Central transition NMR excitation spectra of half-integer quadrupole nuclei. Chemical Physics Letters, 100, 205208.Google Scholar
Samoson, A., Lipmaa, E. & Pines, A. (1988) High resolution solid state NMR averaging of secondorder effects by means of a double-rotor. Molecular Physics, 65, 10131018.CrossRefGoogle Scholar
Scha¨fer, H., Iuga, D., Verhagen, R. & Kentgens, A.P.M. (2000) Population and coherence transfer in halfinteger quadrupolar spin systems induced by simultaneous rapid passages of the satellite transitions: A static and spinning single crystal NMR study. Journal of Chemical Physics, 114, 30733091.CrossRefGoogle Scholar
Smith, S.A., Levante, T.O., Meier, B.H. & Ernst, R.R. (1994) Computer simulations in magnetic resonance. An object-oriented programming approach. Journal of Magnetic Resonance A, 106, 75105.CrossRefGoogle Scholar
Stebbins, J.F., Du, L.S., Kroeker, S., Neuhoff, P., Rice, D., Frye, J. & Jakobsen, H.J. (2002) New opportunities for high-resolution solid-state NMR spectroscopy of oxide materials at 21.1- and 18.8-T fields. Solid State Nuclear Magnetic Resonance, 21, 105115.CrossRefGoogle ScholarPubMed
Tuel, A., Gramlich, V. & Baerlocher Ch. (2001) Synthesis, crystal structure and characterization of AP2DAO, a new layered aluminophosphate templated by 1 ,8-di aminooctane molecules. Microporo us and Mesoporous Materials, 47, 217229.CrossRefGoogle Scholar
Tuel, A., Gramlich, V. & Baerlocher Ch. (2001) Synthesis, structure determination and characterization of a new layered aluminophosphate templated by piperazinium ions. Microporous and Mesoporous Materials, 46, 5766.Google Scholar
Tuel, A., Gramlich, V. & Baerlocher Ch. (2002) Synthesis, characterization and structure determination of two novel layered aluminophosphates templated by 2-methylpiperazine. Microporous and Mesoporous Materials, 56, 119130.Google Scholar
Van Eck, E.R.H., Janssen, R., Maas, W.E.J.R. & Veeman, W.S. (1990) A novel application of nuclear spinecho double-resonance to aluminophosphates and aluminosilicates. Chemical Physics Letters, 174, 428432.Google Scholar
Vega, A.J. (1992) MAS NMR spin locking of halfinteger quadrupolar nuclei. Journal of Magnetic Resonance, 96, 5068.Google Scholar
Vega, S. & Naor, Y. (1981) Triple-quantum NMR on spin systems with I=3/2 in solids. Journal of Chemical Physics, 75, 7586.Google Scholar
Vosegaard, T., Larsen, F.H., Jakobsen, H.J., Ellis, P.D. & Nielsen, C.N. (1997) Sensitivity-enhanced multiplequantum MAS NMR of half-integer quadrupolar nuclei. Journal of the American Chemical Society, 122, 90559056.CrossRefGoogle Scholar
Vosegaard, T., Massiot, D. & Grandinetti, P.J. (2000) Sensitivity enhancements in MQ-MAS NMR of spin-5/2 nuclei using modulate. rf mixing pulses. Chemical Physics Letters, 326, 454460.Google Scholar
Vosegaard, T., Florian, P., Massiot, D. & Grandinetti, P.J. (2001) Multiple quantum magic-angle spinning using rotary resonance excitation. Journal of Chemical Physics, 114, 46184624.CrossRefGoogle Scholar
Wang, P.K., Slichter, C.P. & Sinfelt, J.H. (1984) NMR study of the structure of simple molecules adsorbed on metal surfaces: C2H2 on Pt. Physical Review Letters, 53, 82–8.Google Scholar
Wang, S.H., De Paul, S.M. & Bull, L.M. (1997) Highresolution heteronuclear correlation between quadrupolar and spin 1/2 nuclei using multiple-quantum magic-a ngle spinni ng. Journa l of Magnet ic Resonance, 125, 364368.CrossRefGoogle Scholar
Wu, G., Rovnyak, D. & Griffin, R.G. (1996) Quantitative MQMAS NMR spectroscopy of quadrupolar nuclei in solids. Journal of the American Chemical Society, 118, 93269332.CrossRefGoogle Scholar
Yao, Z., Kwak, H.T., Sakellariou, D., Emsley, L. & Grandinetti, P.J. (2000) Sensitivity enhancement of the central transition NMR signal of quadrupolar nuclei under magic angle spinning. Chemical Physics Letters, 327, 8590.CrossRefGoogle Scholar