Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T12:23:50.362Z Has data issue: false hasContentIssue false

NMR study of surfactant molecules intercalated in montmorillonite and in silylated montmorillonite

Published online by Cambridge University Press:  09 July 2018

J . Grandjean*
Affiliation:
University of Liege, Institute of Chemistry B6a, COSM, Sart, TilmanB-4000 Liege, Belgium
J . Bujdák
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, BratislavaSK-842 36, Slovak Republic
P . Komadel
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, BratislavaSK-842 36, Slovak Republic
*
*E-mail: j.grandjean@ulg.ac.be

Abstract

13C CP MAS NMR and 29Si MAS NMR were used to characterize silylated montmorillonites and to estimate the extent of the silylation reaction. Indirectly-detected proton relaxation times of the intercalated surfactant were measured in both silylated and non-silylated clay systems to monitor the dynamics of intercalated species. A greater degree of mobility in the silylated montmorillonites was found. The lack of NMR information resulting from paramagnetic interaction brought about by structural Fe(III) ions was considered. The resulting broadening can prevent the estimation of the trans/gauche conformer ratio of the intercalated surfactant alkyl chain.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bujdák, J., Iyi, N. & Fujita, T. (2002) The aggregation of methylene blue in montmorillonite dispersions. Clay Minerals, 37, 121133.CrossRefGoogle Scholar
Dékány, I. & Nagy, L.G. (1991) Immersional wetting and adsorption displacement on hydrophilic/ hydrophobic surfaces. Journal of Colloid and Interface Science, 147, 119127.Google Scholar
Dékány, I., Szántó, F., Weiss, A. & Lagaly, G. (1986a) Interactions of hydrophobic layer silicates with alcohol-benzene mixtures. I. Adsorption isotherms. Berichte der Bunsengesellschaft der Physikalische Chemie, 90, 422427.CrossRefGoogle Scholar
Dékány, I., Szántó, F., Weiss, A. & Lagaly, G. (1986b) Interactions of hydrophobic layer silicates with alcohol-benzene mixtures. II. Structure and composition of the adsorptio n layer. Berichte der Bunsengesellschaft der Physikalische Chemie, 90, 427431.CrossRefGoogle Scholar
Dékány, I., Szántó, F. & Nagy, L.G. (1986c) Sorption and immersional wetting on clay minerals having modified surface. II. Interlamellar sorption and wetting on organic montmorillonites. Journal of Colloid and Interface Science, 109, 376384.Google Scholar
Dékány, I., Turi, L., Fonseca, A. & Nagy, J.B. (1999) The structure of acid treated sepiolites: Small-angle X-ray scattering and multi MAS-NMR investigations. Applied Clay Science, 14, 141160.Google Scholar
Flory, P.J. (1953) Principles of Polymer Chemistry, pp. 399431. Cornell University Press, Ithaca, New York.Google Scholar
Grandjean, J. (1998) NMR study of interfacial phenomena. Annual Reports on NMR Spectroscopy, 35, 217260.CrossRefGoogle Scholar
Grandjean, J. (2002) Nuclear magnetic resonance spectroscopy of molecules and ions at clay surfaces. Pp. 37003712 in: Encyclopedia of Surfaces and Colloid Science(Hubbard, A.T., editor). Marcel Dekker, New York.Google Scholar
Joseph, R., Zhang, S. & Ford, W.T. (1996) Structure and dynamics of a colloidal silica-poly(methylmethacrylate) composite by 13C and 29Si MAS NMR. Macromolecules, 29, 13051312.CrossRefGoogle Scholar
Kolodzejski, W. & Klinowski, J. (2002) Kinetics of crosspolarization in solid-state NMR: A guide for chemists. Chemical Review, 102, 613628.CrossRefGoogle Scholar
Kubies, D., Jérôme, R. & Grandjean, J. (2002) Surfactant molecules intercalated in laponite as studied by 13C and 29Si MAS NMR. Langmuir, 18, 61596163.Google Scholar
Lagaly, G. (1986) Interaction of alkylamines with different types of layered compounds. Solid States Ionics, 22, 4351.Google Scholar
Sanz, J. & Robert, J.-L. (1992) Influence of structural factors on 29Si and 27Al NMR chemical shifts of phyllosilicate s 2:1. Physics and Chemistry of Minerals, 19, 3945.CrossRefGoogle Scholar
Türük, B., Bazázsik, K., Dékány, I. & Bartók, M. (2000) Preparation and characterization of new chirally modified laponites. Molecular Crystals and Liquid Crystals, 341, 339344.Google Scholar
Vaia, R.A., Teukolsky, R.K. & Giannelis, E.P. (1994) Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials, 6, 10171022.Google Scholar
VanderHart, D.L., Asano, A. & Gilman, J.W. (2001a) Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 1. Crystallinity, morphology, and the direct influence of Fe3+ ions on nuclea r spins. Chemistry of Materia ls, 13, 37813795.CrossRefGoogle Scholar
VanderHart, D.L., Asano, A. & Gilman, J.W. (2001b) Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 2. Measurement of clay dispersion, crystal stratification, and stability of organic modifiers. Chemistry of Materials, 13, 37963809.Google Scholar
Wang, L.-Q., Liu, J., Exarhos, G.J., Flanigan, K.Y. & Bordia, R. (2000) Conformation heterogeneity and mobility of surfactant molecules in intercalated clay minerals studied by solid-state NMR. Journal of Physical Chemistry B, 104, 28102816.Google Scholar
Zanetti, M., Lomakin, S. & Camino, G. (2000) Polymer layered silicate nanocomposites. Macromolecular Materials and Engineering, 279, 19.Google Scholar