Skip to main content Accessibility help
×
Home

Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey

  • S. Kadir (a1) and A. Akbulut (a2)

Abstract

The Taşoluk kaolinite deposits of Afyonkarahisar (western Anatolia) are hosted by both pre-Early Cambrian sericitic mica-chlorite schists and Neogene volcanites, the latter comprising tuffs and agglomerates. These units have been affected by hydrothermal alteration controlled by faults resulting in complex, irregular, lateral mineralogical zonation. The occurrence of a siliceous cap on altered schists and in claystone, of quartz veins in schists and tuffs, and the development of explosion cones and pit fillings indicate that alteration in both the schists and the volcanites is due to hydrothermal processes. Altered schists have generally large (locally small) Fe contents, and claystones are generally silicified and have small Fe contents. Kaolinite predominates south and west of Taşoluk, whereas high (Fe+Ti)-bearing illite + kaolinite predominate in other altered sections. The kaolinite exhibits a stacked micromorphology within altered schists, and the altered volcanites record in situ precipitation, derived from a mechanism of paired dissolution and precipitation. Illite fibres coexist with kaolinite, smectite, chlorite, mica and sericitized feldspar in markedly altered schists, revealing that the illite formed either authigenically or by conversion of smectite to illite. A relative increase in Cr+Ni and decrease in Sr+Ba in the kaolinite deposits and their schistose host rock relative to the upper level of the kaolinite deposits and their volcanic parent rocks came about by the alteration of chlorite, mica and feldspar in the sericitic mica-chlorite schists, and feldspar, glass shards and schist fragments in the volcanites as a result of extensive faulting, fracturing and hydrothermal activity during Late Miocene-Pliocene volcanism, which contributed to the development of kaolinite deposits under acidic environmental conditions. With regard to industrial applications, the low-Fe kaolinized schists are suitable for use in refractories and paper coatings, while the claystone is suitable for use in ceramics and in the white-cement industry.

Copyright

Corresponding author

References

Hide All
Arslan, M., Kadir, S., Abdioğlu, E. & Kolaylı, H. (2006) Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey. Clay Minerals, 41, 597617.
Berner, E.K. & Berner, R.A. (1996) Global Environment: Water, Air, and Geochemical Cycles. Prentice Hall, New Jersey, USA, 376 pp.
Bethke, G.M. & Altaner, S.P. (1986) Layer-by-layer mechanism of smectite illitization and application to a new rate law. Clays and Clay Minerals, 34, 136145.
Bobos, I., Duplay, J., Rocha, J. & Gomes, C. (2001) Kaolinite to halloysite-7Å transformation in the kaolin deposit of São vicente de Pereira, Portugal. Clays and Clay Minerals, 49, 596607.
Bozkaya, Ö., Gürsu, S. & Göncüoglu, M.C. (2006) Textural and mineralogical evidence for a Cadomian tectonothermal event in the eastern Mediterranean (Sandıklı-Afyon area, western Taurides, Turkey). Gondwana Research, 10, 301315.
Braide, S.P. & Huff, W.D. (1986) Clay mineral variation in Tertiary sediments from the eastern Flank of the Niger Delta. Clay Minerals, 21, 211224.
Breitländer (1988) Pulverproben, Festproben Mineralische, Metallurgische Werkstoffe. Eichproben und Labormaterial GmbH, Hans-Sachs-Straae 12, D-59077 Hamm, Germany.
Brindley, G.W. (1980) Quantitative X-ray analysis of clays. Pp. 411438 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. and Brown, G., editors). Mineralogical Society Monograph 5, London.
Bundy, W. M. (1993) The diverse industrial applications of kaolin. Pp. 4347 in: Kaolin Genesis and Utilization (Murray, H.H., Bundy, W. & Harvey, C., editors). Special Publication 1, The Clay Minerals Society, Boulder, Colorado, USA.
Çevikbaş, A., Ercan, T. & Metin, S. (1988) Geology and regional distribution of Neogene volcanics between Afyon-Suhut. Middle East Technical University Journal of Pure and Applied Sciences, 21, 479499.
Chen, Y.C., Wang, M.K. & Yang, D.S. (2001) Mineralogy of dickite and nacrite from northern Taiwan. Clays and Clay Minerals, 49, 586595.
Curtis, C.D. (1983) Link between aluminium mobility and destruction of secondary porosity. Bulletin of the American Association of Petroleum Geologists, 67, 380384.
Eberl, D.D. (1993) Three zones for illite formation during burial diagenesis and metamorphism. Clays and Clay Minerals, 41, 2637.
Eberl, D. & Hower, J. (1977) The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay. Clays and Clay Minerals, 26, 327340.
Ece, O.I. & Schroeder, P.A. (2007) Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir, Turkey. Clays and Clay Minerals, 55, 1835.
Ece, Ö.I., Schroeder, P.A., Smiley, M. & Wampler, M. (2008) Acid-sulfate alteration of volcanic rocks and genesis of halloysite and alunite deposits in the Biga Peninsula, NW Turkey. Clay Minerals, 43, 281315.
Ehrenberg, S.N. (1991) Kaolinized, potassium-leached zones at the contacts of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf. Marine and Petroleum Geology, 8, 250269.
Exley, C.S. (1976) Observations on the formation of kaolinite in the St. Austell Granite, Cornwall. Clay Minerals, 11, 5163.
Farmer, V.C. (1974) Layer silicates. Pp. 331363 in: Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London.
Farmer, V.C. & Palmieri, F. (1975) The characterization of soil minerals by infrared spectroscopy. Pp. 573671 in: Soil Components, vol. 2, Inorganic Components (Gieseking, J.E., editor). Springer-Verlag, New York.
Farmer, V.C. & Russell, J.D. (1964) The infrared spectra of layer silicates. Spectrochimica Ada, 20, 11491173.
Gibson, H.L., Watkinson, D.H. & Comba, C.D.A. (1983) Silicification: Hydrothermal alteration in an Archean geothermal system within the Amulet Rhyolite Formation, Noranda, Quebec. Economic Geology, 78, 954971.
Gürsu, S. & Göncüoglu, M.C. (2003) Taşoluk, Serban, Akhanm, Başağaç ve Karadirek bölgesinde (Afyon güneyi) yüzeylenen Geç Prekambriyen - Erken Paleozoyik yaşlă birimlerin stratigrafisi ve jeolojisi. Mersin Üniversitesi 10. Yăl Sempozyumu bildiri özleri kitabi, 19-20, Mersin.
Gürsu, S. & Göncüoglu, M.C. (2006) Petrogenesis and tectonic setting of Cadomian felsic igneous rocks, Sandăklă area of the western Taurides, Turkey. International Journal of Earth Sciences, 95, 741757.
Gürsu, S., Göncüoglu, M.C. & Bayhan, H. (2004) Geology and geochemistry of the pre-Early Cambrian rocks in the Sandikli area: implications for the Pan-African evolution NW Gondwanaland. Gondwana Research, 7, 923935.
Hammarstrom, J.M., Seal, R.R. II, Meier, A.L. & Kornfeld, J.M. (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chemical Geology, 215, 40731
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low-grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana. Pp. 5579 in: Aspects of Diagenesis (Scholle, P.A. and Schluger, P.R., editors). U.S.A. Society of Economic Paleontologists and Mineralogists Special Publication, 26.
Hower, J., Eslinger, E.V., Hower, M. & Perry, E.A. (1976) Mechanisms of burial metamorphism of argillite sediments. Geological Society of America Bulletin, 87, 725737.
Inoue, A. (1995) Formation of clay minerals in hydrothermal environments. Pp. 268329 in: Origin and Mineralogy of Clays, Clays and the Environment (Velde, B., editor), Springer-Verlag Berlin.
Iwao, S. (1968) Zonal structure in some kaolin and associated deposits of hydrothermal origin in Japan. Proceedings of 23th International Geological Congress, 14, 107113.
Kadir, S. & Karakaş, Z. (2002) Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey. Neues Jahrbuch für Mineralogie, Abhandlungen, 177, 113132.
Kadir, S., Önen-Hall, P., Aydin, S.N., Yakicier, C., Akarsu, N. & Tuncer, M. (2008) Environmental effect and genetic influence: a regional cancer predisposition survey in the Zonguldak region of Northwest Turkey. Environmental Geology, 54, 391409.
Kämpf, N., Scheinost, A.C. & Schulze, D.G. (2000) Oxide minerals. Pp. 125168 in: Handbook of Soil Science (Sumner, M.E., editor). Boca Raton, Florida, USA.
Keller, W.D. (1976) Scan electron micrographs of kaolins collected from diverse origin — III. Influence of parent material on flint clays and flintlike clays. Clays and Clay Minerals, 24, 262264.
Kunze, G.W. & Dixon, J.B. (1986) Pretretment for mineralogical analysis. Pp. 9199 in: Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods (Klute, A., editor). Soil Science Society of America, Madison, Wisconsin, USA.
Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A. & Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37, 122.
Lavery, N.G. (1985) Quantifying chemical changes in hydrothermally altered volcanic sequences — silica enrichment as a guide to the Crandon massive sulfide depoist, Wisconsin, USA. Journal of Geochemical Exploration, 24, 127.
MacKenzie, R.C. (1957) The Differential Thermal Investigation of Clays. Monograph 2, Mineralogical Society, London, 456 pp.
Madejová, P., Komadel, P. & Çiçel, B. (1992) Infrared spectra of some Czech and Slovak smectites and their correlation with structural formulas. Geologica Carpathica Clays, 1, 912.
MBH Reference Material (1998-99) An ISO 9002 accredited company. 1994 Cert. No. 0524, 99 pp.
Metin, S., Genç, Ş. & Bulut, V. (1987) Afyon ve dolaymm jeolojisi, M.T.A. Raport No. 8103 (in Turkish, Unpublished).
Meunier, A. & Velde, B. (2004) Mite, Origin, Evolution and Metamorphism. Springer-Verlag, Berlin Heidelberg New York, 286 pp.
Meunier, A. (2005) Clays. Springer-Verlag, Berlin Heidleberg, 472 pp.
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK, 332 pp.
Morton, R.L. & Franklin, J.M. (1987) Two-fold classification of Archean volcanic-associated massive sulfide deposits. Economic Geology, 82, 10571063.
Mutlu, H. (1998) Chemical geothermometry and fluid-mineral equilibria for the Ömer-Gecek thermal waters, Afyon area, Turkey. Journal of Volcanology and Geothermal Research, 80, 303321.
Mutlu, H., Saniz, K. & Kadir, S. (2006) Geochemistry and origin of the Şaphane alunite deposit, western Anatolia, Turkey. Ore Geology Review, 26, 3950.
Nagasawa, K. (1978) Kaolin minerals. Pp. 189219 in: Clays and Clay Minerals of Japan (Sudo, T. and Shimoda, S., editors). Developments in Sedimentology 26, Elsevier, Tokyo.
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1128 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.
Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin-Nomade, A., Yvon, J. & Martin, F. (2006) Genesis of Mayouom kaolin deposit (western Cameroon). Applied Clay Science, 32, 125140.
Okay, A.I., Demirbağ, E., Kurt, H., Okay, N. & Kuşçu, I. (1999) An active, deep marine strike-slip basin along the North Anatolian Fault in Turkey. Tectonics, 18, 129147.
Okut, M., Dermirhan, M. & Köse, Z. (1978) Kütahya Hi Emet-Simav ilçeleri kaolen zuhurlan ve dolaylanmn jeoloji raporu. MTA Raport No. 6309 (in Turkish, unpublished).
Parry, W.T., Ballantyne, J.M. & Jacobs, D.C. (1984) Geochemistry of hydrothermal sericite from Roosevelt Hot Springs and the Tintic and Santa Rita porphyry copper systems. Economic Geology, 79, 7286.
Paterson, E. & Swaffield, R. (1987) Thermal analysis. Pp. 99132 in: A Handbook of Determinative Methods in Clay Mineralogy (Wilson, M.J., editor). Chapman & Hall, London, 308 pp.
Poncelet, G.M. & Brindley, G.W. (1967) Experimental formation of kaolinite from montmorillonite at low-temperatures. American Mineralogist, 52, 11611173.
Rask, J.H., Bryndzia, L.T., Branusdorf, N.R. & Murray, T.E. (1997) Smectite illitization in Pliocene-age Gulf of Mexicao mudrocks. Clays and Clay Minerals, 45, 99109.
Sayăn, Ş.A. (1984) The geology, mineralogy, geochemistry and origin of the Yeniçağa kaolinite deposit and other similar deposits in western Turkey, PhD thesis, London University (unpublished).
Sayăn, Ş.A. (1997) Eriklialan sărtă (Gönen) civarănda gelişen tipik hidrotermal kaolen oluşumlan. VIII Ulusal Kil Sempozyumu bildiriler kitabi, 3-14, Kütahya.
Sayăn, Ş.A. (2001) Sorkun yaylasă (Ankara-Güdül) hidrotermal kaolen oluşumlară. 10. Ulusal Kil Sempozyumu, Konya, 235-242.
Sayăn, Ş.A. (2007) Origin of kaolin deposits: evidence from the Hisarcăk (Emet-Kütahya) deposits, western Turkey. Turkish Journal of Earth Sciences, 16, 7796.
Schwertmann, U. (1993) Relation between iron oxides, soil color, and soil formation. Pp. 5169 in: Soil Color (Bigham, J.M. and Ciolkosz, E.J., editors). Soil Science Society of America, Madison, Wisconsin, USA.
Şengör, A.M.C. & Yălmaz, Y. (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181241.
Şengör, A.M.C., Görür, N. & Şaroğlu, F. (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Pp. 227264 in: Strike-slip Faulting and Basin Formation and Sedimentation (Biddle, K.T. and Christie-Blick, N., editors). Society of Economic Paleontologists and Mineralogists Special Publication, 37.
Seyhan, I. (1978) Türkiye kaolen yataklan ile hidrotermal cevherler arasmda görülen ilişkiler. Jeoloji Mühendisliği Dergisi, 4, 2131, Ankara, Turkey.
Srasra, E., Bergaya, F. & Fripiat, J.J. (1994) Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite-smectite clay. Clays and Clay Minerals, 42, 237241.
Uchman, B., Erdoğan, B. & Güngör, T. (2000) Trace fossil assemblages and age of the porphyroid-bearing metasandstones in the Sandikli region. International Earth Sciences Colloquium on the Aegean Region Abstract, Izmir, p.78.
Van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of IR Spectroscopy of Clay Minerals and their Admixtures. Elsevier, Amsterdam, 396 pp.
Velde, B. (1985) Clay Minerals. A Physico-Chemical Explanation of Their Occurrence. Developments in Sedimentology, 40, Elsevier, New York, 427 pp.
Weaver, C.E. (1989) Clays, Muds, and Shales. Developments in Sedimentology, 44, Elsevier, Amsterdam, 819 pp.
Wilson, M.J. (1987) X-ray powder diffraction methods. Pp. 2698 in: A Handbook of Determinative Methods in Clay Mineralogy (Wilson, M.J., editor). Chapman & Hall, London.
Yuan, J. & Murray, H.H. (1993) Mineralogical and physical properties of the Maoming kaolin from Guangdong province, south China. Pp. 249259 in: Kaolin Genesis and Utilization (Murray, H.H., Bundy, W.M. & Harvey, C.C., editors). The Clay Minerals Society, Boulder, Colorado, USA.
Ziegler, K. (2006) Clay minerals of the Permian Rotliegend Group in the North Sea and adjacent areas. Clay Minerals, 41, 355393.

Keywords

Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey

  • S. Kadir (a1) and A. Akbulut (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed