Skip to main content Accessibility help

Mineralogical and geochemical characteristics of late Cretaceous bentonite deposits of the Kelkit Valley Region, northern Turkey

  • H. Yalçin (a1) and G. Gümüşer (a1)


Late Cretaceous bentonitic clays in the Kelkit Valley region of Turkey are composed of an alternation of limestone lenses and silicified tuff nodule-bearing pyroclastic rocks and their alteration products. Quartz, feldspar, biotite, trace amounts of augite together with pumice and volcanic rock fragments comprise the volcanogenic components. Diagenetic minerals are represented by clay, calcite, opal-CT, zeoliteand dolomite. The clay fraction is dominated by smectite and lesser amounts of I-S, illite, chlorite and kaolinite. The d 001 basal spacing of dioctahedral smectites ranges from 12.51 to 12.55Å in Na-smectites and 14.97 to 15.52 A˚in Ca-smectites. The CaO/Na2O ratio of smectites ranges from 0.15 to 19.50, and the interlayer Na and Ca contents are 0.22–0.30 in beidellitesand 0.02–0.09 while those in montmorillonites are 0.01–0.13 and 0.03–0.15, respectively. The data obtained indicate that bentonites formed in a marine environment by the alteration of volcanic ash of rhyodacitic/dacitic and intermediate/acidic composition.


Corresponding author


Hide All
Ahn, J. & Peacor, D.R. (1986) Transmission electron microscope data for rectorite: implications for the origin and structure of ‘fundamental particles’. Clays Clay Miner. 34, 180186.
Altaner, S.P. & Grim, R.E. (1990) Mineralogy, chemistry, and diagenesis of tuffs in the Sucker Creek formation (Miocene), Eastern Oregon. Clays Clay Miner. 38, 561572.
Besson, G., Dainyak, L.G., Rautureau, M., Tsipursky, S.I., Tchoubar, C. & Drits, V.A. (1983) Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites. Japan Appl. Crystallogr. 16, 374383.
Bohor, B.F. & Triplehorn, D.M. (1993) Tonsteins: altered volcanic ash layers in coal-bearing sequences. Geol. Soc. Am., Spec. Paper, 285, 44 pp.
Brindley, G.W. (1980) Quantitative X-ray mineral analysis of clays. Pp. 411438 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogical Society, London.
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305360 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors). Monograph 5, Mineralogic al Society, London.
Broxton, D.E., Bish, D.L. & Warren, R.G. (1987) Distribution and chemistry of diagenetic minerals at Yucca Mountain, Nye County, Nevada. Clays Clay Miner. 35, 89110.
Bystrom-Brusewitz, A.M. (1976) Studies on the Li test to distinguish between beidellite and montmorillonite. Proc. Int. Clay Conf., Mexico City, 419428.
Caillere, S. & Hénin, S. (1963) Minéralogie des Argiles. Masson et Cie, Paris.
Caillere, S., Hénin, S. & Rautureau, M. (1982) Minéralogie des Argiles, II: Classification et nomenclature. Masson et Cie, Paris.
Ceyhan, Ö. (1996) İnorgano- ve organo-killer tarafindan bazι organik kirleticilerin sιvι fazι adsorpsiyonu. PhD thesis, Cumhuriyet Univ., Sivas, Turkey.
Chen, P.Y., Wan, H.M. & Brindley, G.W. (1976) Beidellite clay from Chang-Yuan Taiwan: Geology and mineralogy. Clay Miner. 11, 221233.
Condie, K.C. (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. 104, 137.
Cuadros, J. & Altaner, P. (1998) Compositional and structural features of the octahedral sheet in mixed-layer illite/smectite from bentonites. Eur. J. Mineral., 10, 111124.
Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low grade metamorphism, a review. Sedimentology, 15, 281346.
Eberl, D. & Środoń, J. (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals. Am. Miner. 73, 13351345.
Eberl, D., Środoń, J., Kralik, M., Taylor, B. & Peterman, Z. (1990) Ostwald ripening of clays and metamorphic minerals. Science, 248, 474477.
Flanagan, F.J. (1976) Descriptions and analyses of eight new USGS rock standards: Twenty eight papers present analytical data on new and previously described whole rock standards (Flanagan, F.J., editor). US Geol. Surv. Prof. Paper, 840, 171172.
Govindaraju, K. (1989) 1989 compilation of working values and sample descriptions for 272 geostandards. Geostand. Newslett. 13, 1113.
Grim, R.E. & Güven, N. (1978) Bentonites: Geology, Mineralogy, Properties and Uses. Developments in Sedimentology, 24. Elsevier, Amsterdam.
Grim, R.E. & Kulbicki, G. (1961) Montmorillonites: high temperature reactions and classifications. Am. Miner. 46, 13291369.
Gündogğdu, M.N., Yalçιn, H., Temel, A. & Clauer, N. (1996) Geological, mineralogical and geochemical characteristics of zeolite deposits associated with borates in the Bigadiç, Emet and Kιrka Neogene lacustr ine basins, Western Turkey. Mineral. Deposita, 31, 492513.
Güven, N. (1988) Smectites. Pp. 497560 in: Hydrous Phyllosilicates (Exclusives of Micas) (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington D.C.
Hamilton, J.D. (1971) Beidellitic montmorillonite from Swansea, New South Wales. Clay Miner. 9, 107123.
Harder, M. (1972) Role of magnesium in the formation of smectite minerals. Chem. Geol. 10, 3139.
Henderson, J.H., Jackson, M.L., Syers, J.K., Clayton, R.N. & Rex, R.W. (1971) Cristobalite authigenic origin in relation to montmorillonite and quartz origin in bentonites. Clays Clay Miner. 19, 229238.
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, USA. Pp. 5579 in: Aspects of Diagenesis (Scholle, P.A. & Schluger, P.R., editors). Society of Economic Paleontologists and Mineralogists, Spec. Publ. 26, New York.
Hower, J., Eslιnger, E., Hower, M. & Perry, E. (1976) Mechanism of burial metamorphism of argillaceous sediments: I. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87, 725737.
Huff, W.D. & Morgan, D.J. (1989) Stratigraphy, mineralogy and tectonic setting of Silurian K-bentonites in Southern England and Wales. Proc. 9th Int. Clay Conf., Strasbourg, 3342.
Huff, W.D. & Türkmenoğlu, A.G. (1981) Chemical characteristics and origin of Ordovician K-bentonites along the Cincinnati arch. Clays Clay Miner. 29, 113123.
Iijima, A. (1980) Geology of natural zeolites and zeolitic rocks. Pure Appl. Chem. 52, 21152130.
Keller, W.D. (1978) Classifcation of kaolins exemplified by their textures in scan electron micrographs. Clays Clay Miner. 26, 120
Newman, A.C.D. & Brown, G. (1987) The Chemical Constitution of Clays. Pp. 1128 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.
Rice, S.B., Papke, K.G. & Vaughan, D.E. (1992) Chemical controls on ferrierite crystallization during diagenesis of silicic pyroclastic rocks near Lovelock, Nevada. Am. Miner. 77, 314328.
Ross, C.S. & Hendricks, S.B. (1945). Minerals of the montmorillonite group. US Geol. Surv., Prof. Paper, 205-B, 2379.
Schmid, R. (1981) Descriptive nomenclature and classification of pyroclastic deposits and fragments: Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Geology, 9, 4143.
Schultz, L.G. (1969) Non-montmorillonitic composition of some bentonite beds. Proc. 11th National Conference, New York, 169177. Pergamon Press.
Seymen, İ. (1973) Kelkit Vadisi kuzey kesiminde Kuzey Anadolu Fay Zonunun tektonik özelliği. PhD thesis, Istanbul Technical Univ., Turkey.
Shutov, V., Drits, V. & Sakharov, B. (1969) On the mechanism of a postsedimentary transformation of montmorillonite into hydromica. Proc. Int. Clay Conf., Tokyo, 523531.
Swineford, A., Frye, J.C. & Leonard, A.B. (1955) Petrography of the Late Tertiary ash falls in the Central Great Plains. J. Sed. Pet. 25, 243261.
Tsipursky, S.I. & Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner. 19, 177193.
Vali, H., Martin, R.F., Amarantidis, G. & Morteani, G. (1993) Smectite-group minerals in deep-sea sediments: Monomineralic solid-solution or multiphase mixtures. Am. Miner. 78, 12171229.
Velde, B. (1985) Clay Minerals: A Physico-chemical Explanation of their Occurrence. Developments in Sedimentology, 40. Elsevier, Amsterdam.
Velde, B. & Brusewitz, A.M. (1986) Compositional variation in component layers in natural illite/smectite. Clays Clay Miner. 34, 651657.
Velde, B. & Meunier, A. (1987) Petrologic phase equilibra in natural clay systems. Pp. 423458 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Monograph 6, Mineralogical Society, London.
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Developments in Sedimentology, 15. Elsevier, Amsterdam.
Wilson, M. (1989) Igneous Petrogenesis: A Global Tectonic Approach. Unwin Hyman, London.
Winchester, J.A. & Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 20, 325343.
Yalçιn, H. & Bozkaya, Ö. (1995) Sepiolite-palygorskite from the Hekimhan region (Turkey). Clays Clay Miner. 43, 705717.
Yurevich, A.L. & Sokolava, A.L. (1965) Formation of fine-grained fraction minerals in the Upper Pliocene ash and tuffs of the Balkash area in Turkmenia. Litol. Polezn. Iskop. 3453.


Related content

Powered by UNSILO

Mineralogical and geochemical characteristics of late Cretaceous bentonite deposits of the Kelkit Valley Region, northern Turkey

  • H. Yalçin (a1) and G. Gümüşer (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.