Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T00:43:02.470Z Has data issue: false hasContentIssue false

Measurement of the surface free energy of calcium-montmorillonite

Published online by Cambridge University Press:  09 July 2018

P. Chassin
Affiliation:
INRA, Station de Science du Sol, Route de St. Cyr, 78000 Versailles, France
C. Jounay
Affiliation:
INRA, Station de Science du Sol, Route de St. Cyr, 78000 Versailles, France
H. Quiquampoix
Affiliation:
INRA, Station de Science du Sol, Route de St. Cyr, 78000 Versailles, France

Abstract

The surface free energy of Ca-montmorillonite has been determined from measurement of the contact angle of water on an oriented deposit immersed in n-alkanes; the oriented deposits were equilibrated at different relative humidities. These experiments provided the polar, γSP, and dispersive, γSD, components of the surface free energy γs. The results indicate that: (1) γs is mainly due to dispersive forces (γSD ≃ 145 mJ.m−2) and, to a lesser degree, polar forces (γSP ≃ 35 mJ.m−2). (2) The value of the apparent surface free energy of the clay, γα, tends towards that measured for water when the solid water content exceeds 50 wt%. (3) The sorption of water molecules substantially modifies the surface free energy of the solid; γs decreases from 180 mJ.m−2 to 60 mJ.m−2 when the water content increases from 0 to 50%. These results agree with other observations made on solids whose surface characteristics are similar to montmorillonite, i.e. micas, silicates and glasses. In addition, variations of γs with water content can be related to the hydration processes of smectites. Finally, these results show that the silicate no longer influences the surface properties when the montmorillonite water content exceeds 60%.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A.W. (1982) Physical Chemistry of Surfaces. John Wiley, New York.Google Scholar
Bailey, A.I. & Kay, S.M. (1967) A direct measurement of the influence of vapour, of liquid and of oriented monolayers on the interfacial energy of mica. Proe. Roy. Soc. A. 301, 4756.Google Scholar
Bailey, A.I. & Price, A.G. (1970) Interfacial energies of monomolecular films of fatty acids deposited on mica in aqueous and non-aqueous media. The strength of hydrophobic interactions. J. Chem. Phys. 53, 34213427.Google Scholar
Bangham, D.H. & Razouk, R.I. (1937) Adsorption and the wettability of solid surfaces. Trans. Farad. Soc. 33, 14591463.Google Scholar
Bernett, M.K. & Zisman, W.A. (1968) Effect of adsorbed water on the critical surface tension of wetting on metal surfaces. J. Colloid Interface Sci. 28, 243249.CrossRefGoogle Scholar
Busscher, H.J., Van Pelt, A.W.J., De Boer, P., De Jong, M.P. & Arends, J. (1984) The effect of surface roughening of polymers on measured contact angles of liquids. Colloids and Surfaces 9, 319331.Google Scholar
Calvet, R. (1972) Hydratation de la montmorillonite et diffusion des cations compensateurs. Thèse de Doctorat d'Etat, Université P. et M. Curie, Paris.Google Scholar
Chassin, P. (1975) Etude des interactions montmorillonite calcique-eau-diols. Hydratation des complexes montmorillonite—diols. Thése de Doctorat d'Etat, Université P. et M. Curie, Paris.Google Scholar
Fowkes, F.M. (1964) Attractive forces at interfaces. Ind. Eng. Chem. 56, 4052.Google Scholar
Fowkes, F.M. (1968) Calculation of work of adhesion by pair potential summation. J. Colloid Interface Sci. 28, 493505.Google Scholar
Girifalco, L.A. & Good, R.J. (1957) A theory for the estimation of surface and interfacial energies. I Derivations and application to interfacial tension. J. Phys. Chem. 61, 904909.Google Scholar
Kessaissia, Z. (1979) Etude expérimentale du comportement et des propriétés thermodynamiques de greffons hydrocabonés fixés en surface de silice. Thèse de Doctorat d'Etat, Université de Haute-Alsace, Mulhouse.Google Scholar
Kessaissia, Z., Papirer, E. & Donnet, J.B. (1981) The surface energy of silicas, grafted with alkyl chains of increasing lengths, as measured by contact angle techniques. J. Colloid Interface Sci. 82, 526533.Google Scholar
Neumann, A.W. & Good, R.J. (1979) Technique of measuring contact angles. Surface and Colloid Science 11, 3191.Google Scholar
Oliver, J.F., Huh, C. & Mason, S.G. (1980) An experimental study of some effects of solid surface roughness on wetting. Colloids and Surfaces 1, 79104.Google Scholar
Prost, R. (1975) Etude de l'hydratation des argiles: interactions eau-minéral et mécanisme de la rétention de l'eau. Thèse de Doctorat d'Etat, Université P. et M. Curie, Paris.Google Scholar
Schultz, J., Tsutsumi, K. & Donnet, J.B. (1977a) Surface properties of high-energy solids I. Determination of the dispersive component of the surface free energy of mica and its energy of adhesion to water and nalkanes. J. Colloid lnterfaee Sci. 59,272276.Google Scholar
Schultz, J., Tsutsumi, K. & Donnet, J.B. (1977b) Surface properties of high-energy solids II. Determination of the nondispersive component of the surface free energy and its energy of adhesion to potar liquids. J. Colloid lnterface Sci. 59,277282.CrossRefGoogle Scholar
Shafrin, E.G. & Zisman, W.A. (1967) Effect of adsorbed water on the spreading of organic liquids on soda-lime glass. J. Am. Ceram. Soc. 50, 478484.Google Scholar
Slabaugh, W.H. (1981) Contact angles of aqueous solutions on an organo-clay. J. Colloid Interface Sci. 82, 240243.Google Scholar
Sposito, G. (1984) The Surface Chemistry of Soils. Oxford University Press, Oxford.Google Scholar
Tamai, Y., Makuuchi, K. & Suzuki, M. (1967) Experimental analysis of interfacial forces at the plane surface of solids. J. Phys. Chem. 71, 41764179.Google Scholar
Tessier, D. (1984) Etude expérimentale de l ‘organisation des matériaux argileux. Hydratation, gonflement et strueturation au cours de la dessiceation et de la réhumectation. Thèse de Doctorat d'Etat, Université de Paris VII.Google Scholar
Wu, S.J. (1973) Polar and nonpolar interactions in adhesion. J. Adhesion 5, 3955.Google Scholar
Young, C.J. (1958) Interaction of vapour with silica surfaces. J. Colloid Sci. 13, 6785.Google Scholar