Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T21:30:50.469Z Has data issue: false hasContentIssue false

Les complexes montmorillonite-Cu(III)-benzène: une contribution

Published online by Cambridge University Press:  09 July 2018

D. Walter
Affiliation:
Laboratoire de Matériaux Minéraux, Ecole Nationale Supérieure de Chimie, 3, Rue Alfred Werner, 68093 Mulhouse Cedex, France
D. Saehr
Affiliation:
Laboratoire de Matériaux Minéraux, Ecole Nationale Supérieure de Chimie, 3, Rue Alfred Werner, 68093 Mulhouse Cedex, France
R. Wey
Affiliation:
Laboratoire de Matériaux Minéraux, Ecole Nationale Supérieure de Chimie, 3, Rue Alfred Werner, 68093 Mulhouse Cedex, France

Résumé

Des montmorillonites cuivriques ont été exposées à des vapeurs de benzène, au cours de cycles de déshydratation, adsorption, désorption de l'excès et réhydratation. La fixation du benzène et sa transformation dans les espaces interfoliaires ont été suivies au moyen d'analyses thermogravimétriques, radiocristallographiques et spectrophotométriques infrarouges. Celles-ci ont permis de mettre en évidence deux réactions, correspondant l'une à l'adsorption d'une molécule de benzène par ion Cu2+, l'autre à trois molécules de benzène. Ce dernier se polymérise dans les espaces interfoliaires avec formation tout d'abord de poly (p-phénylène) puis d'un composé qui pourrait s'apparenter à du graphite.

Abstract

Abstract

Cu-montmorillonites were exposed to benzene vapours during cycles of dehydration, adsorption desorption of the excess reagent and rehydration. The fixation of benzene and its changes in the interlayer spaces were studied by means of thermogravimetry and X-ray diffraction techniques and infrared spectrophotometry analysis. Two reactions were demonstrated, one corresponding to the adsorption of one benzene molecule on the Cu2+ ion, and the other to the uptake of three benzene molecules. In the latter case, benzene polymerizes in the interlayer spaces, resulting in the formation of poly (p-phenylene) in the first stage and, finally, of a compound related to graphite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Besson, G. (1980) Structures de smectites dioctaédriques. Paramètres conditionnant les fautes d'empilement des feuillets. Thèse, Univ. Orléans, France.Google Scholar
Doner, H.E. Mortland, M.M. (1969) Benzene complexes with copper(II) montmorillonite. Science, 166, 1406–1407.Google Scholar
Glaeser, R. (1946) Détermination des capacites d'éhange des argiles. C.R. Acad. Sc. Paris, 222, 1179–1181.Google Scholar
Hummel, D.O. Scholl, F. (1968) Atlas der Kunststoff-Analyse. C. Hanser, Munich.Google Scholar
Jones, M.B., Kovacic, P. Lanska, D. (1981) Polymerization of aromatic nuclei, XXVI. Poly (p-phenylene): Friedel Crafts alkylation, molecular weight and propagation mechanism. 7. Polym.Sc., Polym. Chem. Ed., 19, 89–101.Google Scholar
Kovacic, P. Kyriakis, A. (1962a) Polymerization of benzene to poly (p-phenyl). Tetrahedron Letters, 11, 467469.Google Scholar
Kovacic, P. Kyriakis, A. (1962b) Polymerization of benzene to poly (p-phenyl) by aluminium chloride-cupric chloride. J. Org. Chem., 85, 454–458.Google Scholar
Marvel, C.S. 8i Hartzell, G.E. (1958) Preparation and aromatization of poly-1,3-cyclohexadiene. J. Am. Chem Soc., 81, 448–452.Google Scholar
Mortland, M.M. Pinnavaia, T.J. (1971) Formation of copper(II)-arene complexes on the interlamellar surfaces of montmorillonite. Nature Phys. ScL, 229, 75–77.Google Scholar
Noren, G.K. Stille, J.K. (1971) Polyphenylenes. Macromolecular Reviews, 5, 385-429.Google Scholar
Pinnavaia, T.J. & Mortland, M.M. (1971) Interlamellar metal complexes on layer silicates. I. Copper(II)-arene complexes on montmorillonite. J. Phys. Chem., 75, 3957–3962.Google Scholar
Ross, C.S. Hendricks, S.B. (1945) Minerals of the montmorillonite group. U.S. Geol. Surv. Prof. Pap., 205B, 2347.Google Scholar
Rubinstein, I. (1983) Electrochemistry of polyphenylene films deposited anodically on platinum or glassy carbon electrodes in liquid hydrogen fluoride-benzene system. J. Electrochem. Soc., 130, 1506–1509.CrossRefGoogle Scholar
Szymanski, H.A. (1965). Plenum Press, Data Divison, New York.Google Scholar
Soma, Y., SomaM. HaradaI. (1984) The reaction of aromatic molecules in the interlayer of transition-metal ion- exchanged montmorillonite studied by resonance Raman spectroscopy. 1. Benzene andp-phenylenes. J. Phys. Chem., 88, 3034–3038.Google Scholar
Stoessel, F., Guth, J.L. Wey, R. (1977) Polymérisation de benzene en polyparaphénylène dans une montmorillonite cuivrique. Clay Miner., 12, 255–259.CrossRefGoogle Scholar
Van de Poel, D., Cloos, P., Helsen, J. Jannini E, (1973) Comportement particulier du benzène adsorbé sur la montmorillonite cuivrique. Bull. Groupe frang. Argiles, 15, 115–126.Google Scholar
Wey, R. (1955) Etude de la retention des acides phosphoriques par les argiles: montmorillonite et kaolinite. These de doctorat d'Etat, sciences physiques, Strasbourg, France.Google Scholar
Yamamoto, T. Yamamoto, A. (1977) A novel type of polycondensation of polyhalogenated organic aromatic compounds producing thermostable polyphenylene-type polymers promoted by nickel complexes. Chem Lett, 4, 353–356.Google Scholar