Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T04:06:57.142Z Has data issue: false hasContentIssue false

K-Ar evidence for a Mesozoic thermal event superimposed on burial diagenesis of the Upper Silesia Coal Basin

Published online by Cambridge University Press:  09 July 2018

J. Środoń*
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Krakow, Poland
N. Clauer
Affiliation:
Centre de Geochimie de la Surface (CNRS-ULP), 1, rue Blessig, 67084 Strasbourg, France
M. Banaś*
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Krakow, Poland
A. Wójtowicz
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002 Krakow, Poland

Abstract

K-Ar dating of mixed-layer illite-smectite from clay fractions extracted from pyroclastic horizons was used to address the controversy about the age and mechanism of the thermal alteration of Carboniferous rocks from the Upper Silesia Coal Basin (USCB). The clay fractions were also investigated by X-ray diffraction in order to select for dating samples possibly rich in illitesmectite, and to evaluate the K-Ar dates for possible contamination by K-bearing pre-diagenetic minerals, of pyroclastic or epiclastic origin.

The K-Ar dates document intense Variscian tectonic burial illitization produced by thrusting (~290 Ma) in the SW of the basin, and the lack of intense burial illitization in the NE, which is consistent with sedimentological models of the basin. The burial illitization in its final phase (<30%S in illite-smectite) involved incorporation of measurable amounts of ammonium cation in the illite structure (substitution for K).

Advanced illitization in the NE of the basin is much younger than its tectonic inversion (uplift and erosion started in Permian), and the corresponding K-Ar dates have to be interpreted as the result of a Mesozoic thermal event, which produced widespread pervasive illitization at shallow depth. This event was dated at 175 Ma, but it may have started earlier and could have lasted longer. This conclusion is consistent with widespread evidence of a major Mesozoic thermal event all over Central Europe, produced by rifting and lithospheric thinning during the opening of the Tethys and Atlantic oceans.

This study demonstrates that smectite illitization histories may be very complex, and that the nature of the illitization mechanism results in mixed K-Ar dates encompassing pro-longed or multiple illitization histories. Dating of several grain-size fractions may help to unravel such histories.

When a calibration using data from Neogene sedimentary basins is applied, vitrinite reflectance and %S in I-S indicate similar palaeotemperatures of tectonic burial diagenesis in the USCB, but they produce very different estimates of the temperature of the thermal event.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Mass Spectrometry Laboratory, Institute of Physics UMCS, 20-031 Lublin, Poland

References

Altaner, S.P, Hower, J., Whitney, G. & Aronson, J.L (1984) Model for K-bentonite formation: Evidence from zoned K-bentonites in the disturbed belt, Montana. Geology, 12, 412—415.2.0.CO;2>CrossRefGoogle Scholar
M., Banaś, Paszkowski, M. & Clauer, N. (1995) K-Ar ages of white micas from the Upper Carboniferous rocks of Upper Silesia Coal Basin. Studia Geologica Polonica, 108, 21—25.Google Scholar
Banaś, M., Środoń, J. & Clauer, N. (1997) Thermal history of the Upper Silesia Coal Basin constrained by K-Ar dating of illite/smectite from pyroclastic horizons. Sbornik II Seminare Ceske Tektonicke Skupiny, Ostrava, 1997, 4—8.Google Scholar
Bechtel, A., Elliott, W.C, Wampler, J.M & Oszczepalski, S. (1999) Clay mineralogy, crystallinity, and K-Ar ages of illites within the Polish Zechstein Basin; implications for the age of Kupferschiefer mineralization. Economic Geology, 94, 261—272.Google Scholar
Belka, Z. (1993) Thermal and burial history of the Cracow-Silesia region (southern Poland) assessed by conodont CAI analysis. Tectonophysics, 211, 161—190.Google Scholar
K, Bogacz, Dzulynski, S., Haranczyk, C. & Sobczynski, P. (1972) Contact relations of the ore-bearing dolomite in the Triassic of the Cracow-Silesian region. Annales Societatis Geologorum Poloniae, 42, 347—377.Google Scholar
Bonhomme, M.G (1982) Age triasique et jurassique des argiles associées aux minéralisations filoniennes et de phénomènes diagénétiques tardifs en Europe de l'Ouest. Contexte géodynamique et implications génétiques. Comptes Rendus de l'Académie des Sciences, 304, 521—524.Google Scholar
Bonhomme, M.G & Millot, G. (1987) Diagenèse généralisée du Jurassique moyen (170—160 Ma) dans le bassin du Rhône inférieur jusqu'à la bordure des Cevennes (France). Datations K-Ar d'argiles du Trias et du Lias inférieur. Comptes Rendus de l'Académie des Sciences, 304, 431—434.Google Scholar
Bonhomme, M., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. & Winkler, R. (1975) Méthode de datation potassium-argon. Appareillage et technique. Note technique Institut Géologique, Université de Strasbourg, France, 3, 53 pp.Google Scholar
Bonhomme, M.G, Buchman, D. & Besnus, Y. (1983) Reliability of K-Ar dating of clays and silicifications associated with vein mineralizations in Western Europe. Geologische Rundschau, 11, 105—117.Google Scholar
Brockamp, O. & Clauer, N. (2005) A km-scale illite alteration zone in sedimentary wall rocks adjacent to a hydrothermal fluorite vein deposit. Clay Minerals, 40, 245—260.Google Scholar
Brockamp, O., Zuther, M. & Clauer, N. (1987) Epigenetic-hydrothermal origin of the sedimenthosted Mullenbach Uranium deposit, Baden-Baden, W-Germany. Monograph Series on Mineral Deposits, 27, 87—98.Google Scholar
Brockamp, O., Clauer, N. & Zuther, M. (1994) K-Ar dating of episodic Mesozoic fluid migrations along the fault system of Gernsbach between the Moldanubian and Saxothuringian (Northern Black Forest, Germany). Geologische Rundschau, 83, 180—185.Google Scholar
Clauer, N., O'Neil, J.R & Furlan, S. (1995a) Clay minerals as records of temperature conditions and duration of thermal anomalies in the Paris basin, France. Clay Minerals, 30, 1—13.Google Scholar
Clauer, N., Rais, N., Schaltegger, U. & A, Piqué. (1995b) K-Ar systematics of clay-to-mica minerals in a multi-stage low-grade metamorphic evolution. Chemical Geology, 124, 305—316.Google Scholar
Clauer, N., Zwingmann, H. & Chaudhuri, S. (1996) Isotope (K-Ar and oxygen) constraints on the extent and importance of the Liassic hydrothermal activity in Western Europe. Clay Minerals, 31, 301—318.Google Scholar
Clauer, N., Środoń, J., Francû J. & Šuchá V. (1997) K-Ar dating of illite fundamental particles separated from illite-smectite. Clay Minerals, 32, 181—196.Google Scholar
Cooper, J.E & Abedin, K.Z (1981) The relationship between fixed ammonium-nitrogen and potassium in clays from a deep well on the Texas Gulf Coast. The Texas Journal of Science, 33, 103—111.Google Scholar
Dadlez, R., Narkiewicz, M., Stephenson, R.A, M.T.M., Visser & van Vees, J.D (1995) Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for Central European geology. Tectonophysics, 252, 179—195.Google Scholar
Dopita, M., editor (1997) Géologie Ceske Casti Hornoslezske Panve. Ministerstvo Zivotniho Prostredi Ceske Respubliky, Praha, 278 pp. (in Czech).Google Scholar
Dopita, M. & Kralik, J. (1977) Uhelne Tonsteiny Ostravsko-Karvinskeho Revint. Ostrava, 213 pp. (in Czech).Google Scholar
Drits, V.A, Lindgreen, H. & Salyn, A.L (1997) Determination of the content and distribution of fixed ammonium in illite-smectite by X-ray diffraction: Application to North Sea illite-smectite. American Mineralogist, 82, 79—87.CrossRefGoogle Scholar
Dudek, T. & Środoń, J. (1996) Identification of illite/ smectite by X-ray powder diffraction taking into account the lognormal distribution of crystal thickness. Geologica Carpathica Series Clays, 5, 21—32.Google Scholar
Durakiewicz, T. (1996) Electron emission controller with pulsed heating of filament. International Journal of Mass Spectrometry and Ion Processes, 156, 31—40.Google Scholar
Dzulynski, S. & Sass-Gustkiewicz, M. (1985) Hydrothermal karst phenomena as a factor in the formation of Mississippi Valley-type deposits. Pp. 391-439 in: Handbook of Strata-bound and Stratiform Ore Deposits (Wolf, K.H., editor). Elsevier, Amsterdam.Google Scholar
Elliott, W.C & Aronson, J.L (1987) Alleghenian episode of K-bentonite illitization in the southern Appalachian basin. Geology, 15, 735—739.Google Scholar
Elliott, W.C, Aronson, J.L Matisoff, G. & Gautier, D.L (1991) Kinetics of the smectite to illite transformation in the Denver basin: clay mineral, K/Ar, and mathematical model results. American Association of Petroleum Geologists Bulletin, 75, 436—462.Google Scholar
Francû, J., Muller, P., Šuchá V. & Zatkalikova, V. (1990) Organic matter and clay minerals as indicators of thermal history in the Transcarpathian Depression (East Slovakian Neogene Basin) and the Vienna Basin. Geologica Carpathica, 41, 535—546.Google Scholar
Goll, M., Lippolt, H.J & Hoefs, J. (2003) Mesozoic alteration of Permian volcanic rocks (Thuringer Wald, Germany): Ar, Sr and O isotope evidence. Chemical Geology, 199, 209—231.Google Scholar
Gôrecka, E. (1993) Geological setting of the Silesian- Cracow Zn-Pb deposits. Geological Quarterly, 37, 127—146.Google Scholar
Grygar, R. (1993) Strukturni vyvoj a geotektonicka pozice hornoslezske panve w ramci variskeho orogenu. 1 Cesko-Polske Konference o Sedimentologii Karbonu Hornoslezske Panve, Austria. Proceedings, pp. 38 (in Czech).Google Scholar
Hay, R.L, Lee, M., Kolata, D.R, Matthews, J.C & Morton, J.P (1988) Episodic potassic diagenesis of Ordovician tuffs in the Mississippi Valley area. Geology, 16, 743—747.2.3.CO;2>CrossRefGoogle Scholar
Heijlen, W., Muchez, P., Banks, D.A, Schneider, J., Kucha, H. & Keppens, E. (2003) Carbonate-hosted Zn-Pb deposits in Upper Silesia, Poland: Origin and evolution of mineralizing fluids and constraints on genetic models. Economic Geology, 98, 911—932.Google Scholar
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana, U.S.A. Special Publication, 26, pp. 5579. Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, USA.Google Scholar
Huang, W.-L., Longo, J.M & Pevear, D.R (1993) An experimentally derived kinetic model for smectiteto- illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41, 162—177.CrossRefGoogle Scholar
Huon, S., Cornée, J.J, Piqué A., Rais, N., Clauer, N., Liewig, N. & Zayane, R. (1993) Mise en évidence au Maroc d'événements thermiques d'âge triasicoliasique liés à l'ouverture de l'Atlantique. Bulletin de la Société géologique de France, 164, 165—176.Google Scholar
Jackson, M.L (1975) Soil Chemical Analysis — Advanced Course. Published by the author, Madison, Wisconsin.Google Scholar
Jacobs, J. & Breitkreuz, C. (2003) Zircon and apatite fission-track thermochronology of Late Carboniferous volcanic rocks of the NE German Basin. International Journal of Earth Sciences, 92, 165—172.Google Scholar
Komorek, J. (1996) Wlasnosci optyczne wçgla typôw 31—42 z pokladôw Gôrnoslaskiego Zaglçbia Wgglowego. Prace Geologiczne, 140, 71 pp. (in Polish).Google Scholar
Kotas, A. (1971) Uwagi o metamorfizmie wggla Zaglebia Gôrnoslaskiego. Zeszyty Naukowe AGH, Geologia, 14, 7—25 (in Polish).Google Scholar
Kotas, A., editor (1994) Coal-bed methane potential of the Upper Silesian Coal Basin, Poland. Prace PIG, 142, 81 pp. (in Polish).Google Scholar
Kotas, A. (1995) Litostratigraphy and sedimentologicpaleogeographic development, Upper Silesian Coal Basin. Pp. 124136 in: The Carboniferous System in Poland (Zdanowski, A. & Zakowa, H., editors). Polish Geological Institute, Warszawa.Google Scholar
Kotas, A. (2001) Interpretation problems of thermal maturity gradients of Carboniferous formations of the USCB. 25 Sympozjum nt. Geologia Formacji Weglonosnych Polski, Akademia Gôrniczo- Hutnicza, Krakow, Proceedings, pp. 45—51 (in Polish).Google Scholar
Kotas, A., Gadek, S., Bute, Z., Kwarcinski, J. & Malicki, J. (1983) Atlas Geologiczny Gôrnoslaskiego Zaglebia Weglowego. Czesc II. Mapyjakosci wegla 1:100 000. Instytut Geologiczny, Warszawa (in Polish).Google Scholar
Kozlowska, A. & Poprawa, P. (2004) Diagenesis of the Carboniferous clastic sediments of the Mazowsze region and the northern Lublin region related to their burial and thermal history. Przeglqd Geologiczny, 52, 491—500 (in Polish).Google Scholar
Kozlowski, A., Leach, D.L & Viets, J.G (1996) Genetic characteristics of fluid inclusions in sphalerite from the Silesian-Cracow ores, Poland. Prace PIG, 154, 73—84.Google Scholar
Lancelot, J., Briqueu, L., Respaut, J.P & Clauer, N. (1995) Géochimie isotopique des systèmes U-Pb/Pb-Pb et évolution polyphasée des gîtes d'uranium du Lodévois et du sud du Massif Central. Chroniques de la Recherche Minière, 521, 3—18.Google Scholar
Lapot, W. (1992) Pétrographie diversity of tonsteins from the Upper Silesian Coal basin (GZW). Prace Naukowe Uniwersytetu rlqskiego w Katowicach, 1326, 110 pp. (in Polish).Google Scholar
Liewig, N. & Clauer, N. (2000) K-Ar dating of varied microtextural illite in Permian gas reservoirs, northern Germany. Clay Minerals, 35, 271—281.Google Scholar
Liewig, N., Mossmann, J.R & Clauer, N. (1987) Datation isotopique K-Ar d'argiles diagénétiques de réservoirs gréseux: mise en évidence d'anomalies thermiques du Lias inférieur en Europe nord-occidentale. Comptes Rendus de l'Académie des Sciences, 304, 707—712.Google Scholar
Lindgreen, H., Drits, V.A, Sakharov, B.A, Salyn, A.L, Wrang, P. & Dainyak, L.G (2000) Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area. American Mineralogist, 85, 1223—1238.Google Scholar
Majorowicz, J. (1978) Zwiazki pola geotermicznego z uwçgleniem w polskich basenach wgglowych. Kwartalnik Geologiczny, 22, 497—509.(in Polish).Google Scholar
Michalik, M. (2001) Diagenesis of the Weissliegend sandstones in the southwestern margin of the Polish Rotliegend basin. Prace Mineralogiczne, 91, 171 pp.Google Scholar
Morawska, A. (1997) The Lubliniec Fracture Zone: boundary of the Upper Silesian and Malopolska massifs, southern Poland. Annales Societatis Geologorum Poloniae, 67, 429—437.Google Scholar
Mossman, J.-R., Clauer, N. & Liewig, N. (1992) Dating thermal anomalies in sedimentary basins: the diagenetic history of clay minerals in the Triassic sandstones of the Paris Basin, France. Clay Minerals, 27, 211—226.Google Scholar
Mukhopadhyay, P.K (1994) Vitrinite reflectance as maturity parameter. Pp. 1 2 4 in. Vitrinite Reflectance as a Maturity Parameter (Mukhopadhyay P.K. & Dow W.G., editors). ACS Symposium Series 570, American Chemical Society. P.H. Nadeau, M.J. Wilson, W.J. McHardy & J.Tait> (1984) Interstratified clay as fundamental particles. Science 225, 923—925.Google Scholar
Odin, G.S(1982) Interlaboratory standards for dating purposes. Pp. 123—148 in: Numerical Dating in Stratigraphy, Part I (Odin, G.S., editor). J. Wiley & Sons, New York.Google Scholar
Parachoniak, W. & Środoń, J. (1974) The formation of kaolinite, montmorillonite, and mixed-layer montmorillonite- illite during the alteration of Carboniferous tuff (the Upper Silesian Coal Basin). Mineralogia Polonica, 4, 37—56.Google Scholar
Pytte, A. & Reynolds, R.C (1988) The thermal transformation of smectite to illite. Pp. 133-140 in: Thermal Histories of Sedimentary Basins (Naeser, N.D. & McCulloh, T.H., editors). Springer-Verlag, Berlin.Google Scholar
Samson, S.D & E.C., Alexander Jr. (1987) Calibration of the interlaboratory 40Ar—39.r dating standard MMhb—1. Chemical Geology, Isotope Geoscience Section, 66, 27—34.Google Scholar
Schaltegger, U., Zwingmann, H., Clauer, N., Larqué P. & Stille, P. (1995) K-Ar dating of a Mesozoic hydrothermal activity in Carboniferous to Triassic clay minerals of northern Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 75, 163—176.Google Scholar
Scheck, M., Bayer, U., Otto, V., Lamarche, J., Banka, D. & Pharaoh, T. (2002) The Elbe Fault System in North Central Europe a basement controlled zone of crustal weakness. Tectonophysics, 360, 281—299.CrossRefGoogle Scholar
Środoń, J. (1972) Mineralogy of coal-tonstein and K-bentonite from coal-seam no. 610, Bytom Trough (Upper Silesian Coal Basin, Poland). Bulletin Académie Polonica Science, Series Science de la Terre, 20, 155—164.Google Scholar
Środoń, J. (1976) Mixed-layer smectite/illites in the bentonites and tonsteins of the Upper Silesian Coal Basin. Prace Mineralogiczne, 49, 84 pp.Google Scholar
Środoń, J. (1979) Correlation between coal and clay diagenesis in the Carboniferous of the Upper Silesian Coal Basin. Proceedings of the VI International Clay Conference, Oxford, 1978, 251—260.Google Scholar
Środoń, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays and Clay Minerals, 28, 401—411.Google Scholar
Środoń, J. (1981) X-ray identification of randomly interstratified illite/smectite in mixtures with discrete illite. Clay Minerals, 16, 297—304.Google Scholar
Środoń, J. (1984) X-ray powder diffraction identification of illitic materials. Clays and Clay Minerals, 32, 337—349.Google Scholar
Środoń, J. (1995) Reconstruction of maximum paleotemperatures at present erosional surface of the Upper Silesia Basin, based on the composition of illite/smectite in shales. Studia Geologica Polonica, 108, 9—22.Google Scholar
Środoń, J. & Clauer, N. (2001) Diagenetic history of Lower Palaeozoic sediments in Pomerania (northern Poland) traced across the Teisseyre-Tornquist tectonic zone using mixed-layer illite-smectite. Clay Minerals, 36, 15—27.Google Scholar
Środoń, J., Morgan, D.J, Eslinger, E.V., Eberl, D.D. & Karlinger, M.R (1986) Chemistry of illite/smectite and end-member illite. Clays and Clay Minerals, 34, 368—378.Google Scholar
Środoń, J., Eberl, D.D & Drits, V.A (2000) Evolution of fundamental particle-size during illitization of smectite and implications for reaction mechanism. Clays and Clay Minerals, 48, 446—458.Google Scholar
Środoń, J., Clauer, N. & Eberl, D.D (2002) Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling. American Mineralogist, 87, 1528—1535.Google Scholar
Środoń, J., Kotarba, M., Biron, A., Such, P., Clauer, N. & Wôjtowicz, A. (2006) Diagenetic history of the Podhale-Orava basin and the underlying Tatra sedimentary structural units (Western Carpathians): evidence from XRD and K-Ar of illite-smectite. Clay Minerals (in press).Google Scholar
V., Šuchá, Kraus, I., Gerthofferova, H., Petes, J. & Serekova, M. (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Minerals, 28, 243—253.Google Scholar
Šuchá, V., Elsass, F., Eberl, D.D Kuchta, L., Madejovâ J., Gates, W.P & Komadel, P. (1998) Hydrothermal synthesis of ammonium illite. American Mineralogist, 83, 58—67.Google Scholar
Thompson, G.R & Hower, J. (1973) An explanation for low radiometric ages from glauconite. Geochimica et Cosmochimica Acta, 37, 1473—1491.Google Scholar
Velde, B. & Espitalie, J. (1989) Comparison of kerogen maturation and illite/smectite composition in diagenesis. Journal of Petroleum Geology, 12, 103—110.CrossRefGoogle Scholar
Velde, B. & Vasseur, G. (1992) Estimation of the diagenetic smectite-to-illite transformation in timetemperature space. American Mineralogist, 11, 967—976.Google Scholar
Wei, H., Roaldset, E. & Bjoroy, M. (1996) Parallel reaction kinetics of smectite to illite conversion. Clay Minerals, 31, 365—376.Google Scholar
Wodzicki, A. (1987) Origin of the Cracovian-Silesian Zn-Pb deposits. Annales Societatis Geologorum Poloniae, 57, 3—36.Google Scholar
Zwingmann, H., Clauer, N. & Gaupp, R. (1999) Structurerelated geochemical (REE) and isotopic (K-Ar, Rb- Sr, SδO) characteristics of clay minerals from Rotliegend sandstone reservoirs (Permian, Northern Germany). Geochimica et Cosmochimica Acta, 63, 2805—2823.Google Scholar
Żywiecki, M. (2004) Okreslenie maksymalnych paleotemperatur, cisnien oraz skladu chemicznego plynôw w obrebie basenu gôrnoslaskiego w czasie paleozoicznego i/lub mezozoicznego pograzenia. In: Ewolucja Geologiczna Zapadliska Gôrnoslaskiego w Swietle Wynikôw Modelowan Termicznych i Tektonicznych. Report of the Project PCZ—07.1. Polish Geological Institute E3, 19 pp. (in Polish).Google Scholar