Skip to main content Accessibility help

Interpretation of the infrared spectrum of the -clays: application to the evaluation of the layer charge

  • S. Petit (a1), D. Righi (a1), J. Madejová (a2) and A. Decarreau (a1)


The IR spectra of -saturated smectites were examined in terms of their charge characteristics. The υ4 band near 1440 cm-1, observed in the DRIFTS spectra (obtained without use of a KBr matrix), was assigned to the vibrations of ions compensating the negative charge of the clays. When KBr was used as a diluting matrix, the υ4 band was located at 1400 and/or 1440 cm-1. The band at 1400 cm-1, related to NH4Br, originated from the replacement of in the clay by K+ from the KBr. For swelling clay minerals this band indicates that layers have permanent low charge density and/or variable charge. For non-swelling clay minerals, the 1400 cm-1 band characterizes the presence of variable charges only. The υ4 band at 1440 cm-1 suggests that in the clay was not replaced by K+ from KBr and remains in the interlayer space of the clay minerals. This absorption is due to compensating only permanent charge in the interlayers, or part of the interlayers with a high charge density. The presence of both bands at 1400 cm-1 and 1440 cm-1 in the IR spectrum suggests that the clays studied have a heterogeneous interlayer charge.



Hide All
Ben Hadj-Amara, A., Besson, G. & Tchoubar, C. (1987) Caractéristiques structurales d'une smectite dioctaédrique en fonction de Pordre-désordre dans la distribution des charges électriques: I. Etudes des réflexions 00l. Clay Miner. 22, 305318.
Bergaoui, L., Lambert, J.F., Vicente-Rodriguez, M.A., Michot LJ. & Villieras, F. (1995) Porosity of synthetic saponites with variable layer charge pillared by Al13 polycations. Langmuir, 11, 28492852.
Chourabi, B. & Fripiat, J.J. (1981) Determination of tetrahedral substitutions and interlayer surface heterogeneity from vibrational spectra of ammonium in smectites. Clays Clay Miner. 29, 260268.
Čičel, B. & Machajdík, D. (1981) Potassium- and ammonium-treated montmorillonites. I. Interstratified structures with ethylene glycol and water. Clays Clay Miner. 29, 4046.
Ferriso, C.C. & Hornig, D.F. (1959) Absolute infrared intensities of the ammonium ion in crystals. J. Chem. Phys. 32, 12401245.
Fialips, C.I., Petit, S., Decarreau, A. & Beaufort, D. (1999) Influence of synthesis pH on kaolinite “crystallinity” and surface properties. Clays Clay Miner, (in press).
Güven, N. (1992) Molecular aspects of clay-water interactions. Pp. 2—79 in: Clay-water Interface and its Rheological Applications, (Güven, N. & Pollastro, R.M., editors). The Clay Minerals Society, Boulder, Colorado.
Jaynes, W.F. & Bigham, J.M. (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites. Clays Clay Miner. 35, 440448.
Lindgreen, H. (1994) Ammonium fixation during illitesmectite diagenesis in upper Jurassic shale, North Sea. Clay Miner. 29, 527537.
Mermut, A.R. (1994) Problems associated with layer charge characterization of 2:1 phyllosilicates. Pp. 106—122 in: Layer Charge Characteristics of 2:1 Silicate Clay Minerals, (Mermut, A.R., editor). CMS Workshop Lectures, 6, The Clay Minerals Society, Boulder, CO.
Mortland, M.M. & Raman, K.V. (1968) Surface acidity of smectites in relation to hydration, exchangeable cation, and structure. Clays Clay Miner. 16, 393398.
Mortland, M.M., Fripiat, J.J., Chaussidon, J. & Uytterhoeven, J. (1962) Interaction between ammo ma and the expanding lattices of montmorillonite and vermiculite. J. Phys. Chem. 67, 248258.
Nakamoto, K. (1963) Infrared Spectra of Inorganic and Coordination Compounds. 2nd ed., Wiley, New York.
Pelletier, M., Michot, L.J., Barres, O., Humbert, B., Petit, S. & Robert, J.-L. (1999) Influence of KBr conditioning on the IR hydroxyl-stretching region of saponites. Clay Miner. 34, 439445.
Petit, S., Righi, D., Madejova, J. & Decarreau, A. (1998) Layer charge estimation of smectites using infrared spectroscopy. Clay Miner. 33, 579591.
Righi, D., Terribile, F. & Petit, S. (1998) Pedogenic formation of high-charge beidellite in a vertisol of Sardinia (Italy). Clays Clay Miner. 46, 167177.
Ryskin, Y.I. (1974) The vibrations of protons in minerals: hydroxyl, water and ammonium. Pp. 137—181 in: The Infrared Spectra of Minerals, (Farmer, V.C., editor). Monograph No. 4, Mineralogical Society, London.
Sawhney, B.L. (1972) Selective sorption and fixation of cations by clay minerals: a review. Clays Clay Miner. 20, 93100.
Shen, S., Tu S-I. & Doral Kemper, W. (1997) Equilibrium and kinetic study of ammonium adsorption and fixation in sodium-treated vermiculite. Soil Sci. Soc. Am. J. 61, 16111618.
Sherman, W.F. & Smulovitch, P.P. (1970) Pressure scanned Fermi resonance in the spectrum of NH4 isolated in CsBr. J. Chem. Phys. 52, 51875193.
Srasra, E., Bergaya, F. & Fripiat JJ. (1994) Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite-smectite clay. Clays Clay Miner. 42, 237241.
Šucha, V., Elsass, F., Eberl, D.D., Kuchta, L., Madejová, J., Gates, W.P. & Komadel, P. (1998) Hydrothermal synthesis of ammonium illite. Am. Miner. 83, 5867.
Vedder, W. (1965) Ammonium in muscovite. Geochim. Cosmochim. Ada 29, 221228.

Interpretation of the infrared spectrum of the -clays: application to the evaluation of the layer charge

  • S. Petit (a1), D. Righi (a1), J. Madejová (a2) and A. Decarreau (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed