Skip to main content Accessibility help

Identification of components in smectite/kaolinite mixtures

  • J . Madejová (a1), J . Kečkéš (a1) (a2), H. Pálková (a1) and P . Komadel (a1)


Mechanically-prepared binary mixtures of two dioctahedral smectites (of different chemical compositions) with two kaolinites (with different amounts of structural defects) were studied by infrared (IR) spectroscopy to verify the ability of IR spectroscopy to detect small amounts of individual components in the mixtures. The same samples were analysed by X-ray diffraction (XRD) in transmission and reflection geometries to compare the sensitivities of these techniques. Infrared spectroscopy is suitable for detecting small amounts of kaolinite in the smectite-rich samples but is not sensitive to small amounts of smectite in kaolinite-rich samples. The IR spectra of kaolinite/ smectite mixtures have a ‘strongly kaolinitic character’ even with only 30% kaolinite. The most characteristic band of kaolinite, near 3695 cm–1, gradually decreased in intensity with decreasing kaolinite content though the presence of this absorption allowed 0.5 mass % of both kaolinites to be detected in their mixtures with smectites. On the other hand, XRD powder techniques are much more adept at detecting low smectite contents in kaolinite-rich samples.


Corresponding author


Hide All
Amonette, J.E. & Zelazny, L.W. (1994) Quantitative Methods in Soil Mineralogy. Soil Science Society of America, Madison, WI, USA, 462 pp.
Brindley, G.W. (1980) Quantitative X-ray mineral analysis of clays. Pp. 411438 in. Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. and Brown, G., editors). Monogaph, 5, Mineralogical Society, London.
Churchman, G.J., Slade, P.G., Self, P.G. & Janík, L.J. (1994) Nature of interstratified kaolin-smectites in some Australian soils. Australian Journal of Soil Research, 32, 805822.
de la Fuente, S., Cuadros, J. & Linares, J. (2000) Quantification of mixed-layer illite-smectite in glass matrices by Fourier-transform infrared spectroscopy. Clays and Clay Minerals, 48, 299303.
Delvaux, B., Mestdagh, M.M., Vielvoye, L. & Herbillon, A.J. (1989) XRD, IR and ESR study of experimental alteration of Al-nontronite into mixed layer kaolinite/ smectite. Clay Minerals, 24, 617630.
Farmer, V.C. (1974) Layer silicates. Pp. 331363 in. Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London.
Farmer, V.C. (2000) Transverse and longitudinal crystal modes associated with OH stretching vibrations in singl e crystals of kaolinite and dicki te. Spectrochimica Acta A, 56, 927930.
Hillier, S. (1999) Use of an air brush to spray dry samples for X-ray diffraction. Clay Minerals, 24, 617630.
Hlavay, J., Jonas, K., Elek, S. & Inczedy, J. (1977) Characterization of the particle size and the crystallinity of certain minerals by infrared spectrophotometry and other instrume ntal methods I. Investigation on clay minerals. Clays and Clay Minerals, 25, 451456.
Joussein, E., Petit, S. & Decarreau, A. (2001) Une nouvelle méthode de dosage des minéraux argileux en mélange par spectroscopie IR. Comptes Rendus de l’Académie des Sciences, Paris, 332, 8389.
Komadel, P., Madejová, J. & Stucki, J.W. (1995) Reduction and reoxidation of nontronite: Questions of reversibility. Clays and Clay Minerals, 43, 105110.
Komadel, P., Madejová, J. & Stucki, J.W. (1999) Partial stabilization of Fe(II) in reduced ferruginous smectite by Li fixation. Clays and Clay Minerals, 47, 458465.
Madejová, J., Kraus, I. & Komadel, P. (1995) Fourier transform infrared spectroscopic characterization of dioctahedral smectites and illites from the main Slovak deposits. Geologica Carpathica Series, Clays, 4, 2332.
Madejová, J., Kraus, I., Tunega, D. Šamajová, E. (1997) Fourier transform infrared spectroscopic characterization of kaolin group minerals from the main Slovak deposits. Geologica Carpathica Series, Clays, 6, 310.
Moore, D.M. & Jr.Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 332 pp.
Petit, S. & Decarreau, A. (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Minerals, 25, 181196.
Petit, S., Prot, T., Decarreau, A., Mosser, C. & Toledo-Groke, M.C. (1992) Crystallochemical study of a population of particles in smectites from a lateritic weathering profile. Clays and Clay Minerals, 40, 436445.
Pevear, D.R. & Mumpton, F.A. (1989) Quantitative Mineral Analysis of Clays. CMS Workshop Lectures, 1, The Clay Minerals Society, Evergreen, CO, 171 pp.
Poncelet, G.M. & Brindley, G.W. (1967) Experimental formation of kaolinite from montmorillonite at low tempe ratures. American Mine ralogist, 52, 11611173.
Russell, J.D. (1974) Instrumentation and Techniques. Pp. 1125 in. Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogi cal Society, London.
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 1167 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor). Chapman & Hall, London.
Środoń, J. (1980) Synthesis of mixed-layer kaolinite/ smectite. Clays and Clay Minerals, 28, 419424.


Identification of components in smectite/kaolinite mixtures

  • J . Madejová (a1), J . Kečkéš (a1) (a2), H. Pálková (a1) and P . Komadel (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed