Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T07:57:17.520Z Has data issue: false hasContentIssue false

Hydromechanical effects: (II) on the water-Na-smectite system

Published online by Cambridge University Press:  09 July 2018

M. Al-mukhtar
Affiliation:
CNRS, Université d'Orléans, Centre de Recherche sur la Matière Divisée, 1B, Rue de la Férollerie, 45071 Orleans, Cedex 2, France
Y. Qi
Affiliation:
CNRS, Université d'Orléans, Centre de Recherche sur la Matière Divisée, 1B, Rue de la Férollerie, 45071 Orleans, Cedex 2, France
J . -F. Alcover
Affiliation:
CNRS, Université d'Orléans, Centre de Recherche sur la Matière Divisée, 1B, Rue de la Férollerie, 45071 Orleans, Cedex 2, France
J . Conard
Affiliation:
CNRS, Université d'Orléans, Centre de Recherche sur la Matière Divisée, 1B, Rue de la Férollerie, 45071 Orleans, Cedex 2, France
F. Bergaya*
Affiliation:
CNRS, Université d'Orléans, Centre de Recherche sur la Matière Divisée, 1B, Rue de la Férollerie, 45071 Orleans, Cedex 2, France

Abstract

The localization and number of the different types of water in two Na-smectites (Laponite and hectorite) were studied as a function of the hydromechanical stresses applied. Water volume variation was obtained by macroscopic oedometric tests. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) were used to study water-smectite interactions. The TGA results show that the bulk water content decreases while the adsorbed water content remains practically constant with increasing mechanical stress; hectorite adsorbs less water than Laponite at low hydraulic stress. The proportion of adsorbed water obtained by NMR confirms the TGA data. The interlamellar space and the equivalent water layers decrease with increasing mechanical stress and is always lower in hectorite than in Laponite. Hydromechanical effects on the water-Na-smectite system are in agreement with microtexture changes measured by porosimetry. Differences in the properties of the two clays can be attributed to the higher extension of the layers in hectorite compared with Laponite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcover, J.-F., Qi, Y., Al-Mukhtar, M., Bonnamy, S., & Bergaya, F. (2000) Hydromechanical effects: (I) on the Na-smectite microtexture. Clay Miner. 35, 525 – 536.Google Scholar
Al-Mukhtar, M., Robinet, J.C., Liu, C.W. & Plas, F. (1993) Hydromechanical behaviour of partially saturated low porosity clays. Pp. 87 – 98 in: Proc. Int. Conf. on Engineering Fills (Telford, Th., editor), Newcastle Upon Tyne, U.K..Google Scholar
Al-Mukhtar, M., Qi, Y., Alcover, J.-F., & Bergaya, F. (1999) Oedometric and water-retention behaviour of highly compacted unsaturated smectites. Can. Geotech. J. 36, 675 – 684.Google Scholar
Ben Rhaiem, H., Tessier, D. & Pons, C.H. (1986) Comportement hydrique et évolution structurale et texturale des montmorillonites au cours d’un cycle de dessiccation-humectation: partie I. Cas des montmorillonites calciques. Clay Miner. 21, 9 – 19.Google Scholar
Chandler, N., Dixon, D., Gray, M., Hara, K., Cournut, A. & Tillerson, J. (1998) The tunnel sealing experiment: an in situ demonstration of technologies for vault sealing. Proc. 19th Ann. Conf. Canadian Nuclear Soc., Toronto, Canada. I, 1– 15.Google Scholar
Conard, J. (1987) Etude des surfaces par RMN. J. Chimie Physique, 10, 1249 – 1255.Google Scholar
Fripiat, J.J., Cases, J., Francois, M. & Letellier, M. (1982) Thermodynamic and microdynamic behaviour of water in clay suspensions and gels. J. Coll. Interf. Sci. 89-2, 378 – 340.Google Scholar
Güven, N. (1992) Molecular aspects of clay water interactions. Pp. 2 – 79 in: Clay-water interface and its rheological implications. (Güven, N. & Pollastro, R. M., editors). CMS Workshop Lectures, 4, Clay Minerals Society, Boulder, CO, USA.Google Scholar
Lambe, T.W. & Whitman, R.V. (1973) Description of an assemblage of particles. Pp. 29 – 39 & Normal stress between soil particl es. Pp. 52 – 60 in: Soil Mechanics. Wiley & sons, New York.Google Scholar
Mitchell, J.K. (1993) Fundamentals of Soil Behavior. John Wiley, New York.Google Scholar
Poinsignon, C., Estrade-Szwarckopf, H., Conard, J. & Dianoux, A.J. (1987) Water dynamics in the clay water system. A quasielastic neutron scaterring study. Proc. Int. Clay Conf., Denver, 284 – 291.Google Scholar
Qi, Y. (1996) Comportement hydro-mécanique des argiles: couplage des propriétés micro-macroscopiques de la Laponite et de l’hectorite. PhD thesis, Univ. Orléans, France.Google Scholar
Qi, Y., Al-Mukhtar, M., Alcover, J.-F. & Bergaya, F. (1996) Coupling analysis of macroscopic and microscopic behaviour in highly consolidated Na- Laponite clays. Appl. Clay Sci. 11, 185 – 197.Google Scholar
Tessier, D., Lajudie, A. & Petit, J.C. (1992) Relation between the macroscopic behavior of clays and their microstructu ral properties. Appl. Geochem. 1, 151 – 161.Google Scholar
Touret, Q., Pons, C.H., Tessier, D. & Tardy, Y. (1990) Etude de la répartition de l’eau dans des argiles saturées Mg2+ aux fortes teneurs en eau. Clay Miner. 25, 217 – 233.CrossRefGoogle Scholar
Vasseur, G., Djeran-Maigre, I., Grunberger, D., Rousset, G., Tessier, D. & Velde, B. (1995) Evolution of structural and physical parameters of clays during experimental compaction. Marine Petrol. Geol. 12, 941 – 954.Google Scholar