Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-19T06:04:32.317Z Has data issue: false hasContentIssue false

Hybrid nanocomposites of elastomeric polyurethane containing halloysite nanotubes and POSS nanoparticles: tensile, hardness, damping and abrasion performance

Published online by Cambridge University Press:  09 December 2020

Salma Taher Mohamed
Affiliation:
Chemical Engineering Department, Atilim University, 06830, Ankara, Turkey
Seha Tirkes
Affiliation:
Chemical Engineering Department, Atilim University, 06830, Ankara, Turkey
Alinda Oyku Akar
Affiliation:
R&D Center, Esan, 34852, Istanbul, Turkey
Umit Tayfun*
Affiliation:
Inovasens Ltd, Izmir Technopark, 35430, Izmir, Turkey

Abstract

Thermoplastic polyurethane (TPU) matrix was reinforced with polyhedral oligomeric silsesquioxane (POSS) and halloysite nanotubes (HNT), both separately and combined. Composite samples were fabricated using a melt-compounding method. Characterization of the composites obtained was performed via tensile and hardness tests, melt-flow index measurements (MFI), abrasion tests, dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM) to investigate the mechanical performance, flow behaviour, tribological characteristics, thermo-mechanical response and morphological properties. The greatest tensile strength value was obtained for the smallest HNT content. Further addition of HNT resulted in agglomerations for both POSS and HNT particles. The shore hardness of TPU was enhanced by filler inclusions. The TPU/POSS composites displayed significant improvement in terms of abrasion resistance compared to TPU at lower loading levels. The DMA study showed that composites containing 0.5% POSS and 1.0% HNT displayed the greatest storage modulus. The glass-transition temperature of TPU shifted to smaller values with the addition of both nanoparticles. The HNT inclusions increased the MFI value of TPU because of their large aspect ratio. Homogeneous mixing of nanoparticles in the TPU matrix was confirmed by a SEM study of the composites. Their dispersion decreased as the concentrations of POSS and HNT increased. An adjuvant effect of POSS with HNT was achieved in their hybrid composites.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Margarita Darder

References

Ajayan, P.M., Schadler, L.S., & Braun, P.V. (2003) Nanocomposites, Science and Technology. Wiley-VCH Verlag, Weinheim, Germany.CrossRefGoogle Scholar
Almahmoud, O., Choi, T.Y., Kim, H.S., Seo, Y.S., & Yoon, S.H.A (2020) Molecular dynamics study on the effect of modified silica surface on water vapor diffusion in the silica–polyurethane nanocomposite membrane. MRS Communications, 10, 492499.CrossRefGoogle Scholar
Anastopoulos, I., Mittal, A., Usman, M., Mittal, J., Yu, G., Núñez-Delgado, A., & Kornaros, M. (2018) A review on halloysite-based adsorbents to remove pollutants in water and wastewater. Journal of Molecular Liquids, 269, 855868.CrossRefGoogle Scholar
Arbelaiz, A., Fernández, B., Ramos, J.A., Retegi, A., Llano-Ponte, R., & Mondragon, I. (2005) Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Composites Science and Technology, 65, 15821592.CrossRefGoogle Scholar
ASTM D638-14 (2014) Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, USA. www.astm.orgGoogle Scholar
ASTM D868-10 (2020), Standard Practice for Determination of Degree of Bleeding of Traffic Paint. ASTM International, West Conshohocken, PA, USA. www.astm.orgGoogle Scholar
Atiqah, A., Mastura, M.T., Ahmed Ali, B.A., Jawaid, M., & Sapuan, S.M. (2017). A review on polyurethane and its polymer composites. Current Organic Synthesis, 14(2), 233248.CrossRefGoogle Scholar
Bain, E.D., Mrozek, R.A., & Lenhart, J.L. (2017) Role of weak particle-matrix interfacial adhesion in deformation and fracture mechanisms of rigid particulate-filled poly (methyl methacrylate). Mechanics of Materials, 104, 112.CrossRefGoogle Scholar
Baney, R.H., Itoh, M., Sakakibara, A., & Suzuki, T. (1995) Silsesquioxanes. Chemical Reviews, 95, 14091430.CrossRefGoogle Scholar
Barick, A.K., & Tripathy, D.K. (2011) Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Applied Clay Science, 52, 312321.CrossRefGoogle Scholar
Baykus, O., Dogan, S.D., Tayfun, U., Davulcu, A., & Dogan, M. (2017) Improving the dyeability of poly (lactic acid) fiber using octa (aminophenyl) POSS nanoparticle during melt spinning. Journal of Textile Institute, 108, 569578.CrossRefGoogle Scholar
Behera, P.K., Mondal, P., & Singha, N.K. (2018) Self-healable and ultrahydrophobic polyurethane-POSS hybrids by diels–alder click reaction: a new class of coating material. Macromolecules, 51, 47704781.CrossRefGoogle Scholar
Bhowmick, A., & Stephens, H. (2001) Handbook of Elastomers. Marcel Dekker, New York.Google Scholar
Biron, M. (2018) Thermoplastics and Thermoplastic Composites. William Andrew Publishing, Norwich, UK.Google Scholar
Blattmann, H., & Mulhaupt, R. (2016) Multifunctional POSS cyclic carbonates & non-isocyanate polyhydroxyurethane hybrid materials. Macromolecules, 49, 742751.CrossRefGoogle Scholar
Bouaziz, R., Prashantha, K., & Roger, F. (2019) Thermomechanical modeling of halloysite nanotube-filled shape memory polymer nanocomposites. Mechanics of Advanced Materials and Structures, 26, 12091217.CrossRefGoogle Scholar
Bourbigot, S., Turf, T., Bellayer, S., & Duquesne, S. (2009) Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polymer Degradation and Stability, 94, 12301237.CrossRefGoogle Scholar
Carmo, D.M., Oliveira, M.G., & Soares, B.G. (2014) Effect of the dispersive method in the preparation of the polyurethane/hydrotalcite nanocomposites by in situ polymerization. Applied Clay Science, 101, 128135.CrossRefGoogle Scholar
Chattopadhyay, D.K., & Webster, D.C. (2009) Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 34, 10681133.CrossRefGoogle Scholar
Cheng, Z.L., Chang, X.Y., Liu, Z., & Qin, D.Z. (2018) Surface-modified halloysite nanotubes as fillers applied in reinforcing the performance of polytetrafluoroethylene, Clay Minerals, 53, 643656.CrossRefGoogle Scholar
Churchman, G. J., Pasbakhsh, P., & Hillier, S. (2016) The rise and rise of halloysite. Clay Minerals, 51, 303308.CrossRefGoogle Scholar
Cordes, D.B., Lickiss, P.D., & Rataboul, F. (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chemical Reviews, 110, 20812173.CrossRefGoogle ScholarPubMed
Diao, S., Mao, L., Zhang, L., & Wang, Y. (2015) POSS/polyurethane hybrids and nanocomposites: a review on preparation, structure and performance. Elastomers and Composites, 50, 3548.CrossRefGoogle Scholar
Díez-García, I., Keddie, J.L., Eceiza, A., & Tercjak, A. (2020) Optimization of adhesive performance of waterborne poly (urethane-urea) s for adhesion on high and low surface energy surfaces. Progress in Organic Coatings, 140, 105495.CrossRefGoogle Scholar
Drobny, J. (2013) Handbook of Thermoplastic Elastomers. Elsevier, London.Google Scholar
Du, M., Guo, B., & Jia, D. (2010) Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59, 574582.CrossRefGoogle Scholar
Dubey, K.A., Hassan, P.A., & Bhardwaj, Y.K. (2017) High Performance Polymer Nanocomposites for Structural Applications. Pp. 159194 in: Materials under Extreme Conditions (Tyagi, A.K. & Banerjee, S., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Dzenis, Y. (2008) Structural nanocomposites. Science, 319, 419420.CrossRefGoogle ScholarPubMed
Efrat, T., Dodiuk, H., Kenig, S., & McCarthy, S. (2006) Nanotailoring of polyurethane adhesive by polyhedral oligomeric silsesquioxane (POSS). Journal of Adhesion Science and Technology, 20, 14131430.CrossRefGoogle Scholar
Erpek, C.E.Y., Ozkoc, G., & Yilmazer, U. (2017) Comparison of natural halloysite with synthetic carbon nanotubes in poly (lactic acid) based composites. Polymer Composites, 38, 23372346.CrossRefGoogle Scholar
Eselini, N., Tirkes, S., Akar, A.O., & Tayfun, U. (2020) Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid. Journal of Elastomers and Plastics, 52, 701716.CrossRefGoogle Scholar
Fizir, M., Dramou, P., Dahiru, N.S., Ruya, W., Huang, T., & He, H. (2018) Halloysite nanotubes in analytical sciences and in drug delivery: a review. Microchimica Acta, 185, 389.CrossRefGoogle ScholarPubMed
Fu, B. X., Hsiao, B.S., Pagola, S., Stephens, P., White, H., Rafailovich, M., & Lichtenhan, J. (2001) Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules. Polymer, 42, 599611.CrossRefGoogle Scholar
Fu, S., Sun, Z., Huang, P., Li, Y., & Hu, N. (2019) Some basic aspects of polymer nanocomposites: a critical review. Nano Materials Science, 1, 230.CrossRefGoogle Scholar
Gaaz, T.S., Sulong, A.B., & Kadhum. A.A.H. (2017) Influence of sulfuric acid on the tensile properties of halloysite reinforced polyurethane composite. Journal of Mechanical Engineering, 7, 110.Google Scholar
Gaaz, T.S., Luaibi, H.M., Al-Amiery, A.A., & Kadhum, A.A.H. (2018) Effect of phosphoric acid on the morphology and tensile properties of halloysite-polyurethane composites. Results in Physics, 9, 3338.CrossRefGoogle Scholar
Gerasin, V.A., Antipov, E.M., Karbushev, V.V., Kulichikhin, V.G., Karpacheva, G.P., Talroze, R.V., & Kudryavtsev, Y.V. (2013) New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russian Chemical Reviews, 82, 303.CrossRefGoogle Scholar
Ghermezcheshme, H., Mohseni, M., & Yahyaei, H. (2015) Use of nano-indentation and nanoscratch experiments to reveal the mechanical behavior of POSS containing polyurethane nanocomposite coatings: the role of functionality. Tribology International, 88, 6675.CrossRefGoogle Scholar
Gnanasekaran, D., Madhavan, K., & Reddy, B.S.R. (2009) Developments of polyhedral oligomeric silsesquioxanes (POSS), POSS nanocomposites and their applications: a review. Journal of Scientific and Industrial Research, 68, 437464.Google Scholar
Goda, E.S., Yoon, K.R., El-sayed, S.H., & Hong, S.E. (2018) Halloysite nanotubes as smart flame retardant and economic reinforcing materials: a review. Thermochimica Acta, 669, 173184.CrossRefGoogle Scholar
Gong, B., Ouyang, C., Gao, Q., Zhao, L., & Zhao, Z. (2016) Synthesis and properties of a millable polyurethane nanocomposite based on castor oil and halloysite nanotubes. RSC Advances, 6, 1208412092.CrossRefGoogle Scholar
Grimsdale, A.C., & Müllen, K. (2005) The chemistry of organic nanomaterials. Angewandte Chemie International Edition in English, 44, 55925629.CrossRefGoogle ScholarPubMed
Guo, Q., Knight, P.T., & Mather, P.T. (2009) Tailored drug release from biodegradable stent coatings based on hybrid polyurethanes. Journal of Controlled Release, 137, 224233.CrossRefGoogle ScholarPubMed
Hanif, M., Jabbar, F., Sharif, S., Abbas, G., Farooq, A., & Aziz, M. (2016) Halloysite nanotubes as a new drug-delivery system: a review. Clay Minerals, 51, 469477.CrossRefGoogle Scholar
Hebda, E., & Pielichowski, K. (2018) Polyurethane/POSS hybrid materials. Pp. 167204 in: Polymer/POSS Nanocomposites and Hybrid Materials. Springer Publishing, New York.CrossRefGoogle Scholar
Hepburn, C. (1992) Polyurethane Elastomers. Elsevier Science Publishers, London.CrossRefGoogle Scholar
Hillier, S., Brydson, R., Delbos, E., Fraser, T., Gray, N., Pendlowski, H., Phillips, I., Robertson, J., & Wilson, I. (2016) Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs). Clay Minerals, 51, 325350.CrossRefGoogle Scholar
Hope, E.W., & Kittrick, J.A. (1964) Surface tension and the morphology of halloysite. American Mineralogist: Journal of Earth and Planetary Materials, 49, 859866.Google Scholar
Huang, J., Tang, Z.H., Zhang, X.H., & Guo, B.C. (2016) Halloysite polymer nanocomposites. Pp. 509553 in: Nanosized Tubular Clay Minerals. Developments in Clay Science, 7 (Yuan, P., Thill, A. & Bergaya, F., editors). Elsevier, Amsterdam.Google Scholar
Huitron-Rattinger, E., Ishida, K., Romo-Uribe, A., & Mather, P.T. (2013) Thermally modulated nanostructure of poly (ε-caprolactone)-POSS multiblock thermoplastic polyurethanes. Polymer, 54, 33503362.CrossRefGoogle Scholar
Idumah, C.I., Hassan, A., Ogbu, J., Ndem, J.U., & Nwuzor, I.C. (2019) Recently emerging advancements in halloysite nanotubes polymer nanocomposites. Composite Interfaces, 26, 751824.CrossRefGoogle Scholar
ISO 4649 (2017) Rubber, vulcanized or thermoplastic – Determination of abrasion resistance using a rotating cylindrical drum device.Google Scholar
Janowski, B., & Pielichowski, K. (2008) Thermo (oxidative) stability of novel polyurethane/POSS nanohybrid elastomers. Thermochimica Acta, 478, 5153.CrossRefGoogle Scholar
Jiang, L., Zhang, C., Liu, M., Yang, Z., Tjiu, W.W., & Liu, T. (2014) Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids. Composites Science and Technology, 91, 98103.CrossRefGoogle Scholar
Joshi, M., & Butola, B.S. (2004) Polymeric nanocomposites-polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. Journal of Macromolecular Science Part C Polymer Reviews, 44, 389410.CrossRefGoogle Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., & Delvaux, B. (2005) Halloysite clay minerals–a review. Clay Minerals, 40, 383426.CrossRefGoogle Scholar
Kamble, R., Ghag, M., Gaikawad, S., & Panda, B.K. (2012) Halloysite nanotubes and applications: a review. Journal of Advanced Scientific Research, 3, 2529.Google Scholar
Kanbur, Y., & Tayfun, U. (2019) Development of multifunctional polyurethane elastomer composites containing fullerene: mechanical, damping, thermal, and flammability behaviors. Journal of Elastomers and Plastics, 51, 262279.CrossRefGoogle Scholar
Kannana, R.Y., Salacinski, H.J., Odlyha, M., Butler, P.E., & Seifalian, A.M. (2006) The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study. Biomaterials, 27, 19711979.CrossRefGoogle Scholar
Kausar, A. (2018) Review on polymer/halloysite nanotube nanocomposite. Polymer-Plastics Technology and Engineering, 57, 548564.CrossRefGoogle Scholar
Kavuncuoglu, H., Yalcin, H., & Dogan, M. (2019) Production of polyhedral oligomeric silsesquioxane (POSS) containing low density polyethylene (LDPE) based nanocomposite films for minced beef packaging for extension of shelf life. LWT, 108, 385391.CrossRefGoogle Scholar
Kim, H.J., Kim, C.K., & Kwon, Y. (2014) Ablation and fire-retardant properties of hydroxyl-terminated polybutadiene-based polyurethane-g-polyhedral oligomeric silsesquioxane composites. High Performonce Polymers, 27, 749757.CrossRefGoogle Scholar
Król, P., & Król, B. (2012) Surface free energy of polyurethane coatings with improved hydrophobicity. Colloid and Polymer Science, 290, 879893.CrossRefGoogle ScholarPubMed
Kuang, W., & Mather, P.T. (2018) A latent crosslinkable PCL-based polyurethane: Synthesis, shape memory, and enzymatic degradation. Journal of Materials Research, 33, 24632476.CrossRefGoogle Scholar
Kuo, S.W., & Chang, F.C. (2011) POSS related polymer nanocomposites. Progress in Polymer Science, 36, 16491696.CrossRefGoogle Scholar
Lach, R., Michler, G.H., & Grellmann, W. (2010) Microstructure and indentation behaviour of polyhedral oligomeric silsesquioxanes-modified thermoplastic polyurethane nanocomposites. Macromolecular Materials and Engineering, 295, 484491.Google Scholar
Lai, Y.S., Tsai, C.W., Yang, H.W., Wang, G.P., & Wu, K.H. (2009) Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Materials Chemistry and Physics, 117, 9198.CrossRefGoogle Scholar
Lewicki, J.P., Pielichowski, K., Jancia, M., Hebda, E., Albo, R.L., & Maxwell, R.S. (2014) Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polymer Degradation and Stability, 104, 5056.CrossRefGoogle Scholar
Li, G., Wang, L., Ni, H., & Pittman, C.U. (2001) Polyhedral oligomeric silsesquioxane polymers and copolymers: a review. Journal of Inorganic and Organometallic Polymers, 11, 123154.CrossRefGoogle Scholar
Lickiss, P.D., & Rataboul, F. (2008) Fully condensed polyhedral oligosilsesquioxanes (POSS): from synthesis to application. In: Advances in Organometallic Chemistry, 57 (Hill, A.F. & Fink, M.J., editors). Academic Press, Cambridge, UK.Google Scholar
Liu, G., Wu, G., Chen, J., Huo, S., Jin, C., & Kong, Z. (2015) Synthesis and properties of POSS-containing gallic acid-based non-isocyanate polyurethanes coatings. Polymer Degradation and Stability, 121, 247252.CrossRefGoogle Scholar
Liu, H., & Zheng, S. (2005) Polyurethane networks nanoreinforced by polyhedral oligorneric silsesquioxane. Macromolecular Rapid Communications, 26, 196200.CrossRefGoogle Scholar
Liu, M., He, R., Yang, J., Long, Z., Huang, B., Liu, Y., & Zhou, C. (2016) Polysaccharide-halloysite nanotube composites for biomedical applications: a review. Clay Minerals, 51, 457467.CrossRefGoogle Scholar
Liu, M., Jia, Z., Jia, D., & Zhou, C. (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39, 14981525.CrossRefGoogle Scholar
Lopes, G.H., Junges, J., Fiorio, R., Zeni, M., & Zattera, A.J. (2012) Thermoplastic polyurethane synthesis using POSS as a chain modifier. Materials Research, 15, 698704.CrossRefGoogle Scholar
Lvov, Y., Wang, W., Zhang, L., & Fakhrullin, R. (2016) Halloysite clay nanotubes for loading & sustained release of functional compounds. Advanced Materials, 28, 12271250.CrossRefGoogle ScholarPubMed
Madbouly, S.A., & Otaigbe, J.U. (2009) Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Progress in Polymer Science, 34, 12831332.CrossRefGoogle Scholar
Madbouly, S.A., Otaigbe, J.U., Nanda, A.K., & Wicks, D.A. (2007) Rheological behavior of POSS/polyurethane-urea nanocomposite films prepared by homogeneous solution polymerization in aqueous dispersions. Macromolecules, 40, 49824991.CrossRefGoogle Scholar
Mahapatra, S.S., Yadav, S.K., & Cho, J.W. (2012) Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. Reactive & Functional Polymers, 72, 227232.CrossRefGoogle Scholar
Manocha, L.M., Valand, J., Patel, N, Warrier, A., & Manocha, S. (2006) Nanocomposites for structural applications. Journal of Pure and Applied Physics, 44, 135142.Google Scholar
Markovic, E., Nguyen, K., Clarke, S., Constantopoulos, K., Matisons, J., & Simon, G.P. (2013) Synthesis of POSS–polyurethane hybrids using octakis (m-isoprenyl-a, a'-dimethylbenzylisocyanato dimethylsiloxy) octasilsesquioxane (Q8M8TMI) as a crosslinking agent. Journal of Polymer Science Part A: Polymer Chemistry, 51, 50385045.CrossRefGoogle Scholar
Mather, P.T., Qin, H., Wu, J., Bobiak, J., & Mather, P. (2006) POSS-based Polyurethanes: From Degradable Polymers to Hydrogels. In: Medical Polymers, International Conference Focusing on Polymers used in the Medical Industry, 5. Rapra Publishing, Cologne, Germany.Google Scholar
Michalowski, S., & Pielichowski, K. (2018) 1, 2-Propanediolizobutyl POSS as a co-flame retardant for rigid polyurethane foams. Journal of Thermal Analysis and Calorimetry, 134, 13511358.CrossRefGoogle Scholar
Mihelčič, M., Gaberšček, M., Di Carlo, G., Giuliani, C., de Luna, M.S., Lavorgna, M., & Surca, A.K. (2019) Influence of silsesquioxane addition on polyurethane-based protective coatings for bronze surfaces. Applied Surface Science, 467, 912925.CrossRefGoogle Scholar
Misra, R., Fu, B.X., & Morgan, S.E. (2007) Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 45, 24412455.CrossRefGoogle Scholar
Mollo, M., & Bernal, C. (2015) Polymer nanocomposites for structural applications. Pp. 505518 in: Polymer Nanocomposites Based on Inorganic and Organic Nanomaterials (Mohanty, S., Nayak, S.K., Kaith, B.S., & Kalia, S., editors). John Wiley & Sons, Hoboken, New Jersey, USA.Google Scholar
Nanda, A.K., Wicks, D.A., Madbouly, S.A., & Otaigbe, J.U. (2006) Nanostructured polyurethane/POSS hybrid aqueous dispersions prepared by homogeneous solution polymerization. Macromolecules, 39, 70377043.CrossRefGoogle Scholar
Nguyen, H., Zatar, W., & Mutsuyoshi, H. (2017) Hybrid Polymer Composites for Structural Applications (Thakur, V.K., Thakur, M.K., & Pappu, A., editors). Hybrid Polymer Composite Materials. Woodhead Publishing, Cambrige, UK.CrossRefGoogle Scholar
Oaten, M., & Choudhury, N.R. (2005) Silsesquioxane-urethane hybrid for thin film applications. Macromolecules, 38, 63926401.CrossRefGoogle Scholar
Oh, H., & Green, P.F. (2009) Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nature Materials, 8, 139143.CrossRefGoogle ScholarPubMed
Owoseni, O., Zhang, Y., Su, Y., He, J., McPherson, G.L., Bose, A., & John, V.T. (2015) Tuning the wettability of halloysite clay nanotubes by surface carbonization for optimal emulsion stabilization. Langmuir, 31, 1370013707.CrossRefGoogle ScholarPubMed
Ozdil, N., Kayseri, G.O., & Menguc, G.S. (2012) Analysis of abrasion characteristics in textiles. In: Adamiak, M. (Eds) Abrasion Resistance of Materials. Intech, Rijeka.Google Scholar
Pagacz, J., Hebda, E., Janowski, B., Sternik, D., Jancia, M., & Pielichowski, K. (2018) Thermal decomposition studies on polyurethane elastomers reinforced with polyhedral silsesquioxanes by evolved gas analysis. Polymer Degradation and Stability, 149, 129142.CrossRefGoogle Scholar
Pan, R., Wang, L.L., Shanks, R., & Liu, Y. (2019) The influence of trisilanolisobutyl POSS on domain microstructure of a polyurethane hybrid composite: a molecular simulation approach. Silicon, 11, 22532260.CrossRefGoogle Scholar
Pandey, S., Jana, K.K., Aswal, V K., Rana, D., & Maiti, P. (2017) Effect of nanoparticle on the mechanical and gas barrier properties of thermoplastic polyurethane. Applied Clay Science, 146, 468474.CrossRefGoogle Scholar
Papoulis, D. (2019) Halloysite based nanocomposites and photocatalysis: a review. Applied Clay Science, 168, 164174.CrossRefGoogle Scholar
Petrovic, Z.S., & Ferguson, J. (1991) Polyurethane elastomers. Progress in Polymer Science, 16, 695836.CrossRefGoogle Scholar
Phillips, S.H., Haddad, T.S., & Tomczak, S.J. (2004) Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)–polymers. Current Opinion in Solid State & Materials Science, 8, 2129.CrossRefGoogle Scholar
Pötschke, P., Pionteck, J., & Stutz, H. (2002) Surface tension, interfacial tension, and morphology in blends of thermoplastic polyurethanes and polyolefins. Part I. Surface tension of melts of TPU model substances and polyolefins. Polymer, 43, 69656972.CrossRefGoogle Scholar
Primel, A., Férec, J., Ausias, G., Tirel, Y., Veillé, J.M., & Grohens, Y. (2017) Solubility and interfacial tension of thermoplastic polyurethane melt in supercritical carbon dioxide and nitrogen. Journal of Supercritical Fluids, 122, 5257.CrossRefGoogle Scholar
Qi, H.J., & Boyce, M.C. (2005) Stress–strain behavior of thermoplastic polyurethanes. Mechanics of Materials, 37, 817839.CrossRefGoogle Scholar
Qian, Y., Wei, P., Zhao, X., Jiang, P., & Yu, H. (2013) Flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane nanocomposites. Fire and Materials, 37, 116.CrossRefGoogle Scholar
Raftopoulos, K.N., & Pielichowski, K. (2016) Segmental dynamics in hybrid polymer/POSS nanomaterials. Progress in Polymer Science, 52, 136187.CrossRefGoogle Scholar
Rao, C.N., Müller, A., & Cheetham, A.K. (2006) The Chemistry of Nanomaterials: Synthesis, Properties and Applications. John Wiley & Sons, New Jersey.Google Scholar
Ravishankar, B, Nayak, S.K., & Kader, M.A. (2019) Hybrid composites for automotive applications – a review. Journal of Reinforced Plastics and Composites, 38, 835845.CrossRefGoogle Scholar
Rawtani, D., & Agrawal, Y.K. (2012) Multifarious applications of halloysite nanotubes: a review. Reviews on Advanced Materials Science, 30, 282295.Google Scholar
Sadjadi, S. (2020) Halloysite-based hybrids/composites in catalysis. Applied Clay Science, 189, 105537.CrossRefGoogle Scholar
Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005) Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15, 35593592.CrossRefGoogle Scholar
Sanusi, O.M., Benelfellah, A., & Hocine, N.A. (2020) Clays and carbon nanotubes as hybrid nanofillers in thermoplastic-based nanocomposites – a review. Applied Clay Science, 185, 105408.CrossRefGoogle Scholar
Savas, L.A., Tayfun, U., Hancer, M., & Dogan, M. (2019) The flame-retardant effect of calcium hypophosphite in various thermoplastic polymers. Fire and Materials, 43, 294302.CrossRefGoogle Scholar
Silvestre, J., Silvestre, N., & De Brito, J. (2016) Polymer nanocomposites for structural applications: Recent trends and new perspectives. Mechanics of Advanced Materials and Structures, 23, 12631277.CrossRefGoogle Scholar
Smith, R.J., Holder, K.M., Ruiz, S., Hahn, W., Song, Y., Lvov, Y.M., & Grunlan, J.C. (2018) Environmentally benign halloysite nanotube multilayer assembly significantly reduces polyurethane flammability. Advenced Functional Materials, 28, 1703289.CrossRefGoogle Scholar
Song, X., Zhang, X., Li, T., Li, Z., & Chi, H. (2019) Mechanically robust hybrid POSS thermoplastic polyurethanes with enhanced surface hydrophobicity. Polymers, 11, 373.CrossRefGoogle ScholarPubMed
Spoljaric, S., & Shanks, R.A. (2012) Novel polyhedral oligomeric silsesquioxane-substituted dendritic polyester tougheners for linear thermoplastic polyurethane. Journal of Applied Polymer Science, 126, 440454.CrossRefGoogle Scholar
Sui, T., Salvati, E., Ying, S., Sun, G., Dolbnya, I.P., Dragnevski, K., & Korsunsky, A.M. (2017) Strain softening of nano-scale fuzzy interfaces causes Mullins effect in thermoplastic polyurethane. Science Reports, 7, 19.Google ScholarPubMed
Sung, G., & Kim, J.H. (2017) Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers. Composites Science and Technology, 146, 147154.CrossRefGoogle Scholar
Szefer, E., Stafin, K., Leszczyńska, A., Zając, P., Hebda, E., Raftopoulos, K.N., & Pielichowski, K. (2019) Morphology, dynamics, and order development in a thermoplastic polyurethane with melt blended POSS. Journal of Polymer Science Part B Polymer Physics, 57, 11331142.CrossRefGoogle Scholar
Szeluga, U., Kumanek, B., & Trzebicka, B. (2015) Synergy in hybrid polymer/nanocarbon composites. A review. Composites Part A Applied Science and Manufacturing, 73, 204231.CrossRefGoogle Scholar
Szolyga, M., Dutkiewicz, M., & Marciniec, B. (2018) Polyurethane composites based on silsesquioxane derivatives of different structures. Journal of Thermal Analysis and Calorimetry, 132, 16931706.CrossRefGoogle Scholar
Taheri, S., & Sadeghi, G.M.M. (2015) Microstructure–property relationships of organo-montmorillonite/polyurethane nanocomposites: influence of hard segment content. Applied Clay Science, 114, 430439.CrossRefGoogle Scholar
Tang, Z., Liu, P., Guo, J., & Su, Z. (2008) Preparation and characterization of poly (hydroxyurethane)/halloysite nanocomposites via in-situ polymerization. e-Polymers, 8, 17.CrossRefGoogle Scholar
Tayfun, U., Kanbur, Y., Abacı, U., Güney, H. Y., & Bayramlı, E. (2017) Mechanical, electrical, and melt flow properties of polyurethane elastomer/surface-modified carbon nanotube composites. Journal of Composite Materials, 51, 19871996.CrossRefGoogle Scholar
Turgut, G., Dogan, M., Tayfun, U., & Ozkoc, G. (2018) The effects of POSS particles on the flame retardancy of intumescent polypropylene composites and the structure-property relationship. Polymer Degradation and Stability, 149, 96111.CrossRefGoogle Scholar
Turri, S., & Levi, M. (2005) Wettability of polyhedral oligomeric silsesquioxane nanostructured polymer surfaces. Macromolecular Rapid Communication, 26,12331236.CrossRefGoogle Scholar
Wei, S., Meng, L., Liu, W., Guo, S., & Zhang, X. (2019) Polyhedral oligomeric silsesquioxane (POSS) as reinforcing agent for waterborne polyurethane coatings on wood. Materials Research, 22, e20180278.CrossRefGoogle Scholar
Wu, J., Ge, Q., & Mather, P.T. (2010) PEG-POSS multiblock polyurethanes: Synthesis, characterization, and hydrogel formation. Macromolecules, 43, 76377649.CrossRefGoogle Scholar
Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015) Properties and applications of halloysite nanotubes: Recent research advances and future prospects. Applied Clay Science, 112, 7593.CrossRefGoogle Scholar
Zaharescu, T., Marinescu, V., Hebda, E., & Pielichowski, K. (2018) Thermal stability of gamma-irradiated polyurethane/POSS hybrid materials. Journal of Thermal Analysis and Calorimetry, 133, 4954.CrossRefGoogle Scholar
Zahidah, K.A., Kakooei, S., Ismail, M.C., & Raja, P.B. (2017) Halloysite nanotubes as nanocontainer for smart coating application: A review. Progress in Organic Coatings, 111, 175185.CrossRefGoogle Scholar
Zeng, X., Zhong, B., Jia, Z., Zhang, Q., Chen, Y., & Jia, D. (2019) Halloysite nanotubes as nanocarriers for plant herbicide and its controlled release in biodegradable polymers composite film. Applied Clay Science, 171, 2028.CrossRefGoogle Scholar
Zhang, Q., He, H., Xi, K, Huang, X., Yu, X., & Jia, X. (2011) Synthesis of N-phenylaminomethyl POSS and its utilization in polyurethane. Macromolecules, 44, 550557.CrossRefGoogle Scholar
Zhang, S.L., Zou, Q.C., & Wu, L.M. (2006) Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromolecular Material Engineering, 291, 895901.CrossRefGoogle Scholar
Zhang, W., & Muller, A.H. (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Progress in Polymer Science, 38, 11211162.CrossRefGoogle Scholar
Zhang, W., Camino, G., & Yang, R. (2017) Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Progress in Polymer Science, 67, 77125.CrossRefGoogle Scholar
Zhang, W., Sadollahkhani, A., Li, Y., Leandri, V., Gardner, J.M., & Kloo, L. (2019) Mechanistic insights from functional group exchange surface passivation: A combined theoretical and experimental study. ACS Applied Energy Materials, 2, 27232733.CrossRefGoogle Scholar
Zhao, B., Xu, S., Adeel, M., & Zheng, S. (2019) Formation of POSS-POSS interactions in polyurethanes: From synthesis, morphologies to shape memory properties of materials. Polymer, 160, 8292.CrossRefGoogle Scholar
Zhao, H., She, W., Shi, D., Wu, W., Zhang, Q.C., & Li, R.K. (2019) Polyurethane/POSS nanocomposites for superior hydrophobicity and high ductility. Composites Part B Engineering, 177, 107441.CrossRefGoogle Scholar
Zhao, J., Fu, Y., & Liu, S. (2008) Polyhedral oligomeric silsesquioxane (POSS)-modified thermoplastic and thermosetting nanocomposites: a review. Polymers & Polymer Composites, 16, 483500.CrossRefGoogle Scholar