Skip to main content Accessibility help

High-performance PTFE nanocomposites based on halloysite nanotubes

  • Zhi-Lin Cheng (a1), Xing-Yu Chang (a1), Zan Liu (a1), Dun-Zhong Qin (a1) (a2) and Ai-Ping Zhu (a1) (a3)...


Halloysite nanotubes (HNTs)/polytetrafluoroethylene (PTFE) nanocomposites were prepared by the cold compression moulding method. The effects of addition of HNTs (HNTs ‘filling’) on the performances of PTFE were explored using X-ray diffraction, Fourier Transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis which showed that HNTs were well dispersed in the PTFE matrix by means of physical mixing at lower contents of 2–5 wt.%; the introduction of HNTs into PTFE could improve the heat stability of the PTFE. Furthermore, the mechanical and tribological performances of the nanocomposites were measured to examine the filling effect. The tensile strength of the HNTs/PTFE nanocomposites at 2–5 wt.% HNTs content increased by ~3.5% while their wear rates decreased by 55–90% relative to pure PTFE, clear proof of the filling effect of HNTs with a high aspect ratio.


Corresponding author


Hide All
Ahmadi, S.J., Huang, Y.D. & Li, W. (2005) Fabrication and physical properties of EPDM-organoclay nanocomposites. Composites Science and Technology, 65, 10691076.
Carli, L.N., Daitx, T.S., Soares, G.V., Crespo, J.S. & Mauler, R.S. (2014) The effects of silane coupling agents on the properties of PHBV/halloysite nanocomposites. Applied Clay Science, 87, 311319.
Čermák, M., Kadlec, P., Šutta, P. & Polanský R. (2016) Structural and mechanical behaviour of LLDPE/HNT nanocomposite films. International Conference of Polymer Processing Society, 17, 574582.
Chen, W.X., Li, F., Han, G., Xia, J.B., Wang, L.Y., Tu, J.P. & Xu, Z.D. (2003) Tribological behavior of carbon-nanotube-filled PTFE composites. Tribology Letters, 215, 275278.
Cheng, Z.L. & Sun, W. (2016) Structure and physical properties of halloysite nanotubes. Acta Petrolei Sinica (Petroleum Processing Section), 32, 123128.
Dong, Y., Marshall, J., Haroosh, H.J., Mohammadzadehmoghadam, S., Liu, D.Y., Qi, X.W. & Lau, K.T. (2015) Polylactic acid (PLA)/halloysite nanotube (HNT) composite mats: influence of HNT content and modification. Composites PartA, Applied Science & Manufacturing, 76, 2836.
Du, M.L., Guo, B.C. & Jia, D.M. (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). European Polymer Journal, 42, 13611369.
Handge, U.A., Hedicke-Höchstötter K & Altstadt Y (2010) Composites of polyamide 6 and silicate nanotubes of the mineral halloysite: influence of molecular weight on thermal, mechanical and rheo-logical properties. Polymer, 51, 2690–2699.
Ismail, H., Pasbakhsh, P., Ahmad Fauzi, M.N. & Bakar, A.A. (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polymer Testing, 27, 841850.
Jia, Z.X., Luo, Y.F., Guo, B.C., Yang, B.T., Du, M.L. & Jia, D.M. (2009) Reinforcing and flame-retardant effects of halloysite nanotubes on LLDPE. Polymer-Plastics Technology and Engineering, 48, 607–613.
Klaas, N.V., Marcus K & Kellock, C. (2005) The tribological behaviour of glass filled polytetrafluoro-ethylene. Tribology International, 38, 824833.
Krick, B.A., Pitenis, A.A., Harris, K.L., Junk, C.P., Sawyer, W.G., Brown, S.C., Rosenfeld, H.D., Kasprzak, D.J., Johnson, R.S., Chan, C.D. et al. (2015) Ultralow wear fluoropolymer composites: nanoscale functionality from microscale fillers. Tribology International, 95, 245–255.
Kwong, H.Y., Wong, M.H., Wong, Y.W. & Wong, K.H. (2006) Magnetoresistivity of cobalt-polytetrafluoro-ethylene granular composites. Applied Physics Letters, 89, 173109.
Lee, J.Y., Lim, D.P. & Lim, D.S. (2007) Tribological behavior of PTFE nanocomposite films reinforced with carbonnanoparticles. Composites: PartB, 38, 810816.
Leszczynska, A., Njuguna, J., Pielichowski, K. & Banerjee, J.R. (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochimica Acta, 454, 122.
Lim, S.T., Yang, H.H., Choi, H.J. & Jhon, M.S. (2002) Synthetic biodegradable aliphatic polyester/montmor-illonite nanocomposites. Chemistry of Materials, 14, 18391844.
Liu, M.X., Guo, B.C., Du, M.L. & Jia, D.M. (2007a) Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Applied Physics A, 88, 391395.
Liu, M.X., Guo, B.C., Du, M.L. & Jia, D.M. (2007b) Properties of halloysite nanotube epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18, 455703. DOI:10.1088/0957-4484/18/45/455703.
Liu, P., Lu, R.G., Huang, T., Wang, H.Y. & Li, T.S. (2012) A study on the mechanical and tribological properties of carbon fabric/PTFE composites. Journal of Macromolecular Science Part B, 85, 786–797.
Liu, M.X., Zhang Y & Zhou, C.R. (2013a) Nanocomposites of halloysite and polylactide. Applied Clay Science, 75-76, 5257.
Liu, M.X., Wu, C.C., Jiao, Y.P., Xiong, S. & Zhou, C.R. (2013b) Chitosan-halloysite nanotubes nanocompo-site scaffolds for tissue engineering. Journal of Materials Chemistry B, 1, 20782089.
Liu, Y., Qiang, C., Li, H. & Zhang, J. (2013c) Fabrication and characterization of mesoporous carbon nanosheets using halloysite nanotubes and polypyrrole via a template-like method. Journal of Applied Polymer Science, 128, 517522.
Liu, M.X., Jia, Z.X., Jia, D.M. & Zhou, C.R. (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science, 39, 14981525.
Liu, M.X., Chang, Y.Z., Yang, J., You, Y.Y., He, R., Chen, T.F. & Zhou, C.R. (2016a) Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. Journal of Materials Chemistry B, 4, 22532263.
Liu, M.X., He, R., Yang, J., Long, Z., Huang, B., Liu, Y.W. & Zhou, C. (2016b) Polysaccharide-halloysite nanotube composites for biomedical applications: areview. Clay Minerals, 51, 457467.
Liu, Z., Li, Y.X., Ma, L., Qin, D.Z. & Cheng, Z.L. (2017) A study of tribological properties of polypropylene nanocomposites reinforced with pretreated HNTs. China Petroleum Processing and Process Research, 19, 115124.
Lvov, Y & Abdullayev, E. (2013) Functional polymer—clay nanotube composites with sustained release of chemical agents. Progress in Polymer Science, 38, 16901719.
McElwain, S.E., Blanchet, T.A., Schadler, L.S. & Sawyer, W.G. (2008) Effect of particle size on the wear resistance of alumina-filled PTFE micro- and nano-composites. Tribology Transactions, 51, 247–253.
Pasbakhsh, P., Ismail, H., Ahmad Fauzi, M.N. & Bakar, A.A. (2009) The partial replacement of silica or calcium carbonate by halloysite nanotubes as fillers in ethylene propylene diene monomer composites. Applied Polymer and Science, 113, 39103919.
Pasbakhsh, P., Ismail, H., Ahmad Fauzi, M.N. & Bakar, A.A. (2010) EPDM/modified halloysite nanocomposites. Applied Clay Science, 48, 405413.
Razi, A.F., Atieh, M.A., GirunN., Chuah, T.G., EI-Sadig, M. & Biak, D.R.A. (2003) Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber. Composite Structures, 14, 641649.
Vail, J.R., Burris, D.L. & Sawyer, W.G. (2009) Multifunctionality of single-walled carbon nano-tube-polytetrafluoroethylene nanocomposites. Wear, 267, 619624.
Vohra, K., Anand, A., UI Haq, M.I., Raina, A. & Wani, M.F. (2016) Tribological characterization of a self-lubricat-ing PTFE under lubricated conditions. Materials Focus, 5, 14.
Wang, Y.X. & Yan, F.Y. (2006) Tribological properties of transfer films of PTFE-based composites. Wear, 261, 13591366.
Ye, Y.P., Chen, H.B., Wu, J.S. & Chan, C.M. (2011) Evaluation on the thermal and mechanical properties of HNT-toughened epoxy/carbon fibre composites. Composites Part B Engineering, 42, 21452150.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed