Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T09:57:10.361Z Has data issue: false hasContentIssue false

High catalytic performance of Fe-rich palygorskite clay-supported Ni catalysts for steam reforming of toluene

Published online by Cambridge University Press:  11 May 2023

Minghao Ji
Affiliation:
Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China Institute of Atmospheric Environment & Pollution Control Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Xuehua Zou*
Affiliation:
Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China Institute of Atmospheric Environment & Pollution Control Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Haibo Liu
Affiliation:
Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China Institute of Atmospheric Environment & Pollution Control Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Yinsheng Zhang
Affiliation:
Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China Institute of Atmospheric Environment & Pollution Control Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Shiwei Dong
Affiliation:
Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China Institute of Atmospheric Environment & Pollution Control Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Chengrui Xu
Affiliation:
Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China Institute of Atmospheric Environment & Pollution Control Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Qiaoqin Xie
Affiliation:
Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China Institute of Atmospheric Environment & Pollution Control Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Dong Chen
Affiliation:
Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China Institute of Atmospheric Environment & Pollution Control Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Chengzhu Zhu
Affiliation:
Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China Institute of Atmospheric Environment & Pollution Control Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
Tianhu Chen*
Affiliation:
Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China Institute of Atmospheric Environment & Pollution Control Engineering, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

The development and application of Fe-rich palygorskite clay has been restricted significantly by its red colour and low grade. Moreover, the nano-structured properties of palygorskite and the relatively large Fe content of Fe-rich palygorskite clay have received insufficient attention. The present study involved the synthesis of Ni-based catalysts via a coprecipitation method using Fe-rich palygorskite clay as the support. The catalysts were then evaluated for their performance for catalytic steam reforming of toluene (CSRT). The experimental findings revealed that the Fe in Fe-rich palygorskite clay interacted strongly with Ni and formed Fe-Ni alloys. The catalyst with a Ni/Fe mass ratio of 14 (Ni14/FePal) calcined in air at 600°C exhibited superior performance for CSRT under the reaction temperature 700°C and S/C molar ratio of 1.0. According to the kinetics study, Ni14/FePal exhibited the lowest apparent activation energy (33.99 kJ mol−1) among the catalysts, which further confirmed the superior catalytic activity in CSRT. The characterizations of the catalysts used demonstrated that the excellent stability and resistance to coke formation of Ni14/FePal were attributable to the presence of a sufficient amount of highly dispersed Fe-Ni alloys on its surface.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chun Hui Zhou

References

Adnan, M.A., Muraza, O., Razzak, S.A., Hossain, M.M. & de Lasa, H.I. (2017). Iron Oxide over Silica-Doped Alumina Catalyst for Catalytic Steam Reforming of Toluene as a Surrogate Tar Biomass Species. Energy & Fuels, 31(7), 74717481. https://doi.org/10.1021/acs.energyfuels.7b01301CrossRefGoogle Scholar
Asadullah, M., Miyazawa, T., Ito, S.-i., Kunimori, K., Koyama, S. & Tomishige, K. (2004). A comparison of Rh/CeO2/SiO2 catalysts with steam reforming catalysts, dolomite and inert materials as bed materials in low throughput fluidized bed gasification systems. Biomass and Bioenergy, 26(3), 269-279. https://doi.org/10.1016/s0961-9534(03)00105-3CrossRefGoogle Scholar
Ashok, J. & Kawi, S. (2013). Nickel–Iron Alloy Supported over Iron–Alumina Catalysts for Steam Reforming of Biomass Tar Model Compound. ACS Catalysis, 4(1), 289301. https://doi.org/10.1021/cs400621pCrossRefGoogle Scholar
Ashok, J., Dewangan, N., Das, S., Hongmanorom, P., Wai, M.H., Tomishige, K. & Kawi, S. (2020). Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Processing Technology, 199. https://doi.org/10.1016/j.fuproc.2019.106252CrossRefGoogle Scholar
Barzegari, F., Kazemeini, M., Rezaei, M., Farhadi, F. & Keshavarz, A.R. (2022). Syngas production through CO2 reforming of propane over highly active and stable mesoporous NiO-MgO-SiO2 catalysts: Effect of calcination temperature. Fuel, 322. https://doi.org/10.1016/j.fuel.2022.124211CrossRefGoogle Scholar
Boudriche, L., Calvet, R., Hamdi, B. & Balard, H. (2012). Surface properties evolution of attapulgite by IGC analysis as a function of thermal treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 399, 110. https://doi.org/10.1016/j.colsurfa.2012.02.015CrossRefGoogle Scholar
Chen, H., Zhao, J., Zhong, A. & Jin, Y. (2011). Removal capacity and adsorption mechanism of heat–treated palygorskite clay for methylene blue. Chemical Engineering Journal, 174(1), 143150. https://doi.org/10.1016/j.cej.2011.08.062CrossRefGoogle Scholar
Chen, Y., Chen, T., Liu, H., Zhang, P., Wang, C., Dong, S., Chen, D., Xie, J., Zou, X., Suib, S.L. & Li, C. (2020). High catalytic performance of the Al–promoted Ni/Palygorskite catalysts for dry reforming of methane. Applied Clay Science, 188. https://doi.org/10.1016/j.clay.2020.105498CrossRefGoogle Scholar
Choong, C.K.S., Zhong, Z., Huang, L., Wang, Z., Ang, T.P., Borgna, A., Lin, J., Hong, L. & Chen, L. (2011). Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3: I. Catalytic stability, electronic properties and coking mechanism. Applied Catalysis A: General, 407(1–2), 145154. https://doi.org/10.1016/j.apcata.2011.08.037CrossRefGoogle Scholar
Dong, S., Chen, T., Xu, F., Liu, H., Wang, C., Zhang, Y., Ji, M., Xu, C., Zhu, C., Li, Z. & Zou, X. (2022). Catalytic Oxidation of Toluene over Fe-Rich Palygorskite Supported Manganese Oxide: Characterization and Performance. Catalysts, 12(7). https://doi.org/10.3390/catal12070763CrossRefGoogle Scholar
Ezzatahmadi, N., Millar, G.J., Ayoko, G.A., Zhu, J., Zhu, R., Liang, X., He, H. & Xi, Y. (2019). Degradation of 2,4-dichlorophenol using palygorskite-supported bimetallic Fe/Ni nanocomposite as a heterogeneous catalyst. Applied Clay Science, 168, 276286. https://doi.org/10.1016/j.clay.2018.11.030CrossRefGoogle Scholar
Furusawa, T., Saito, K., Kori, Y., Miura, Y., Sato, M. & Suzuki, N. (2013). Steam reforming of naphthalene/benzene with various types of Pt- and Ni-based catalysts for hydrogen production. Fuel, 103, 111121. https://doi.org/10.1016/j.fuel.2011.09.026CrossRefGoogle Scholar
Gan, M.J., Niu, Y.Q., Qu, X.J. & Zhou, C.H. (2022). Lignin to value-added chemicals and advanced materials: extraction, degradation, and functionalization. Green Chemistry, 24(20), 77057750. https://doi.org/10.1039/d2gc00092jCrossRefGoogle Scholar
Gao, N., Wang, X., Li, A., Wu, C. & Yin, Z. (2016). Hydrogen production from catalytic steam reforming of benzene as tar model compound of biomass gasification. Fuel Processing Technology, 148, 380387. https://doi.org/10.1016/j.fuproc.2016.03.019CrossRefGoogle Scholar
Gao, N., Han, Y. & Quan, C. (2018). Study on steam reforming of coal tar over Ni-Co/ceramic foam catalyst for hydrogen production: Effect of Ni/Co ratio. International Journal of Hydrogen Energy, 43(49), 2217022186. https://doi.org/10.1016/j.ijhydene.2018.10.119CrossRefGoogle Scholar
Gao, N., Chen, K., Lai, X. & Quan, C. (2021). Catalytic steam reforming of real tar under high-efficiency Ni/USY catalyst for H2 production. Fuel, 306. https://doi.org/10.1016/j.fuel.2021.121676CrossRefGoogle Scholar
García-Diéguez, M., Pieta, I.S., Herrera, M.C., Larrubia, M.A. & Alemany, L.J. (2010). Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane. Journal of Catalysis, 270(1), 136145. https://doi.org/10.1016/j.jcat.2009.12.010CrossRefGoogle Scholar
Gong, J., Liu, J., Wan, D., Chen, X., Wen, X., Mijowska, E., Jiang, Z., Wang, Y. & Tang, T. (2012). Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism. Applied Catalysis A: General, 449, 112120. https://doi.org/10.1016/j.apcata.2012.09.028CrossRefGoogle Scholar
He, J., Liu, Y., Meng, Y., Sun, X., Biswas, S., Shen, M., Luo, Z., Miao, R., Zhang, L., Mustain, W.E. & Suib, S.L. (2016). High-rate and long-life of Li-ion batteries using reduced graphene oxide/Co3O4 as anode materials. RSC Advances, 6(29), 2432024330. https://doi.org/10.1039/c6ra03790aCrossRefGoogle Scholar
He, L., Hu, S., Yin, X., Xu, J., Han, H., Li, H., Ren, Q., Su, S., Wang, Y. & Xiang, J. (2020). Promoting effects of Fe-Ni alloy on co-production of H2 and carbon nanotubes during steam reforming of biomass tar over Ni-Fe/α-Al2O3. Fuel, 276. https://doi.org/10.1016/j.fuel.2020.118116CrossRefGoogle Scholar
Higo, T., Saito, H., Ogo, S., Sugiura, Y. & Sekine, Y. (2017). Promotive effect of Ba addition on the catalytic performance of Ni/LaAlO3 catalysts for steam reforming of toluene. Applied Catalysis A: General, 530, 125131. https://doi.org/10.1016/j.apcata.2016.11.026CrossRefGoogle Scholar
Jiang, B., Dou, B., Wang, K., Zhang, C., Song, Y., Chen, H. & Xu, Y. (2016). Hydrogen production by chemical looping steam reforming of ethanol using NiO/montmorillonite oxygen carriers in a fixed-bed reactor. Chemical Engineering Journal, 298, 96106. https://doi.org/10.1016/j.cej.2016.04.027CrossRefGoogle Scholar
Kathiraser, Y., Ashok, J. & Kawi, S. (2016). Synthesis and evaluation of highly dispersed SBA-15 supported Ni–Fe bimetallic catalysts for steam reforming of biomass derived tar reaction. Catalysis Science & Technology, 6(12), 43274336. https://doi.org/10.1039/c5cy01910aCrossRefGoogle Scholar
Kong, M., Yang, Q., Fei, J. & Zheng, X. (2012). Experimental study of Ni/MgO catalyst in carbon dioxide reforming of toluene, a model compound of tar from biomass gasification. International Journal of Hydrogen Energy, 37(18), 1335513364. https://doi.org/10.1016/j.ijhydene.2012.06.108CrossRefGoogle Scholar
Li, H., Wang, Y., Zhou, N., Dai, L., Deng, W., Liu, C., Cheng, Y., Liu, Y., Cobb, K., Chen, P. & Ruan, R. (2021). Applications of calcium oxide–based catalysts in biomass pyrolysis/gasification – A review. Journal of Cleaner Production, 291. https://doi.org/10.1016/j.jclepro.2021.125826CrossRefGoogle Scholar
Liu, H., Chen, T., Chang, D., Chen, D., He, H. & Frost, R.L. (2012). Catalytic cracking of tar derived from rice hull gasification over palygorskite-supported Fe and Ni. Journal of Molecular Catalysis A: Chemical, 363-364, 304310. https://doi.org/10.1016/j.molcata.2012.07.005CrossRefGoogle Scholar
Liu, H., Chen, T., Chang, D., Chen, D., He, H., Yuan, P., Xie, J. & Frost, R.L. (2013). Characterization and catalytic performance of Fe3Ni8/palygorskite for catalytic cracking of benzene. Applied Clay Science, 74, 135140. https://doi.org/10.1016/j.clay.2012.04.005CrossRefGoogle Scholar
Liu, C., Chen, D., Cao, Y., zhang, T., Mao, Y., Wang, W., Wang, Z. & Kawi, S. (2020). Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas. Renewable Energy, 161, 408418. https://doi.org/10.1016/j.renene.2020.07.089CrossRefGoogle Scholar
Lu, M., Xiong, Z., Fang, K., Li, J., Li, X. & Li, T. (2020a). Effect of Promoters on Steam Reforming of Toluene over a Ni-Based Catalyst Supported on Coal Gangue Ash. ACS Omega, 5(41), 2633526346. https://doi.org/10.1021/acsomega.0c01197CrossRefGoogle Scholar
Lu, M., Xiong, Z., Fang, K., Li, X., Li, J. & Li, T. (2020b). Steam reforming of toluene over nickel catalysts supported on coal gangue ash. Renewable Energy, 160, 385395. https://doi.org/10.1016/j.renene.2020.06.012CrossRefGoogle Scholar
Lu, Y., Zhang, H., Wang, Q. & Wang, A. (2022). Hydrochloric acid pretreatment combined with microwave-assisted oxalic acid leaching of natural red palygorskite-rich clay for efficiently change the color and properties. Applied Clay Science, 228. https://doi.org/10.1016/j.clay.2022.106594CrossRefGoogle Scholar
Mani, S., Kastner, J.R. & Juneja, A. (2013). Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Processing Technology, 114, 118125. https://doi.org/10.1016/j.fuproc.2013.03.015CrossRefGoogle Scholar
Mei, D., Lebarbier, V.M., Rousseau, R., Glezakou, V.-A., Albrecht, K.O., Kovarik, L., Flake, M. & Dagle, R.A. (2013). Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts. ACS Catalysis, 3(6), 11331143. https://doi.org/10.1021/cs4000427CrossRefGoogle Scholar
Mekki, A., Mokhtar, A., Hachemaoui, M., Beldjilali, M., Meliani, M.f., Zahmani, H.H., Hacini, S. & Boukoussa, B. (2021). Fe and Ni nanoparticles-loaded zeolites as effective catalysts for catalytic reduction of organic pollutants. Microporous and Mesoporous Materials, 310. https://doi.org/10.1016/j.micromeso.2020.110597CrossRefGoogle Scholar
Min, Z., Yimsiri, P., Asadullah, M., Zhang, S. & Li, C.-Z. (2011). Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming. Fuel, 90(7), 25452552. https://doi.org/10.1016/j.fuel.2011.03.027CrossRefGoogle Scholar
Oemar, U., Ming Li, A., Hidajat, K. & Kawi, S. (2014). Mechanism and kinetic modeling for steam reforming of toluene on La0.8Sr0.2Ni0.8Fe0.2O3 catalyst. AIChE Journal, 60(12), 41904198. https://doi.org/10.1002/aic.14573CrossRefGoogle Scholar
Park, N.-K., Lee, Y., Kwon, B., Lee, T., Kang, S., Hong, B. & Kim, T. (2019). Optimization of Nickel-Based Catalyst Composition and Reaction Conditions for the Prevention of Carbon Deposition in Toluene Reforming. Energies, 12(7). https://doi.org/10.3390/en12071307Google Scholar
Peng, R., Chen, Y., Zhang, B., Li, Z., Cui, X., Guo, C., Zhao, Y. & Zhang, J. (2021). Tailoring the stability of Ni-Fe/mayenite in methane–carbon dioxide reforming. Fuel, 284. https://doi.org/10.1016/j.fuel.2020.118909CrossRefGoogle Scholar
Quek, X.-Y., Liu, D., Cheo, W.N.E., Wang, H., Chen, Y. & Yang, Y. (2010). Nickel-grafted TUD-1 mesoporous catalysts for carbon dioxide reforming of methane. Applied Catalysis B: Environmental, 95(3-4), 374-382. https://doi.org/10.1016/j.apcatb.2010.01.016CrossRefGoogle Scholar
Ren, J., Cao, J.-P., Zhao, X.-Y., Wei, F., Zhu, C. & Wei, X.-Y. (2017). Extension of catalyst lifetime by doping of Ce in Ni-loaded acid-washed Shengli lignite char for biomass catalytic gasification. Catalysis Science & Technology, 7(23), 57415749. https://doi.org/10.1039/c7cy01670kCrossRefGoogle Scholar
Ren, J., Yang, F.-L. & Liu, Y.-L. (2021a). Enhanced H2-Rich Gas Production via Steam Reforming of Toluene over Ni-Based Hydrotalcite-Derived Catalysts at Low Temperature. ACS Sustainable Chemistry & Engineering, 9(24), 83158326. https://doi.org/10.1021/acssuschemeng.1c03122CrossRefGoogle Scholar
Ren, J., Cao, J.-P., Yang, F.-L., Liu, Y.-L., Tang, W. & Zhao, X.-Y. (2021b). Understandings of Catalyst Deactivation and Regeneration during Biomass Tar Reforming: A Crucial Review. ACS Sustainable Chemistry & Engineering, 9(51), 1718617206. https://doi.org/10.1021/acssuschemeng.1c07483CrossRefGoogle Scholar
Santanna, V.C., Silva, S.L., Silva, R.P. & Castro Dantas, T.N. (2020). Use of palygorskite as a viscosity enhancer in salted water-based muds: effect of concentration of palygorskite and salt. Clay Minerals, 55(1), 4852. https://doi.org/10.1180/clm.2020.7CrossRefGoogle Scholar
Son, I.H., Lee, S.J., Soon, A., Roh, H.-S. & Lee, H. (2013). Steam treatment on Ni/γ-Al2O3 for enhanced carbon resistance in combined steam and carbon dioxide reforming of methane. Applied Catalysis B: Environmental, 134–135, 103109. https://doi.org/10.1016/j.apcatb.2013.01.001CrossRefGoogle Scholar
Son, I.H., Lee, S.J., Song, I.Y., Jeon, W.S., Jung, I., Yun, D.J., Jeong, D.-W., Shim, J.-O., Jang, W.-J. & Roh, H.-S. (2014). Study on coke formation over Ni/γ-Al2O3, Co-Ni/γ-Al2O3, and Mg-Co-Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane. Fuel, 136, 194200. https://doi.org/10.1016/j.fuel.2014.07.041CrossRefGoogle Scholar
Tang, X., Li, L., Shen, B. & Wang, C. (2013). Halloysite-nanotubes supported FeNi alloy nanoparticles for catalytic decomposition of toxic phosphine gas into yellow phosphorus and hydrogen. Chemosphere, 91(9), 13681373. https://doi.org/10.1016/j.chemosphere.2013.02.010CrossRefGoogle ScholarPubMed
Tang, W., Cao, J.-P., Yang, F.-L., Feng, X.-B., Ren, J., Wang, J.-X., Zhao, X.-Y., Zhao, M., Cui, X. & Wei, X.-Y. (2020). Highly active and stable HF acid modified HZSM-5 supported Ni catalysts for steam reforming of toluene and biomass pyrolysis tar. Energy Conversion and Management, 212. https://doi.org/10.1016/j.enconman.2020.112799CrossRefGoogle Scholar
Wang, L., Li, D., Koike, M., Koso, S., Nakagawa, Y., Xu, Y. & Tomishige, K. (2011). Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Applied Catalysis A: General, 392(1–2), 248255. https://doi.org/10.1016/j.apcata.2010.11.013CrossRefGoogle Scholar
Wang, D., Yuan, W. & Ji, W. (2011). Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Applied Energy, 88(5), 16561663. https://doi.org/10.1016/j.apenergy.2010.11.041CrossRefGoogle Scholar
Wang, L., Li, D., Koike, M., Watanabe, H., Xu, Y., Nakagawa, Y. & Tomishige, K. (2013). Catalytic performance and characterization of Ni–Co catalysts for the steam reforming of biomass tar to synthesis gas. Fuel, 112, 654661. https://doi.org/10.1016/j.fuel.2012.01.073CrossRefGoogle Scholar
Wang, L., Li, D., Watanabe, H., Tamura, M., Nakagawa, Y. & Tomishige, K. (2014). Catalytic performance and characterization of Co/Mg/Al catalysts prepared from hydrotalcite-like precursors for the steam gasification of biomass. Applied Catalysis B: Environmental, 150–151, 8292. https://doi.org/10.1016/j.apcatb.2013.12.002CrossRefGoogle Scholar
Wang, K., Wang, L., Zhang, Y., Zhang, Y. & Liang, J. (2020). Microstructural evolution and sintering properties of palygorskite nanofibers. International Journal of Applied Ceramic Technology, 17(4), 18331842. https://doi.org/10.1111/ijac.13485CrossRefGoogle Scholar
Wang, S., Gainey, L., Wang, X., Mackinnon, I.D.R. & Xi, Y. (2022). Influence of palygorskite on in-situ thermal behaviours of clay mixtures and properties of fired bricks. Applied Clay Science, 216. https://doi.org/10.1016/j.clay.2021.106384CrossRefGoogle Scholar
Xie, H., Shu, D., Chen, T., Liu, H., Zou, X., Wang, C., Han, Z. & Chen, D. (2022). An in-situ DRIFTs study of Mn doped FeVO4 catalyst by one-pot synthesis for low-temperature NH3-SCR. Fuel, 309. https://doi.org/10.1016/j.fuel.2021.122108CrossRefGoogle Scholar
Xue, B., Guo, H., Liu, L. & Chen, M. (2018). Preparation, characterization and catalytic properties of yttrium-zirconium-pillared montmorillonite and their application in supported Ce catalysts. Clay Minerals, 50(2), 211219. https://doi.org/10.1180/claymin.2015.050.2.05CrossRefGoogle Scholar
Yao, D., Wu, C., Yang, H., Zhang, Y., Nahil, M.A., Chen, Y., Williams, P.T. & Chen, H. (2017). Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst. Energy Conversion and Management, 148, 692700. https://doi.org/10.1016/j.enconman.2017.06.012CrossRefGoogle Scholar
Yao, D., Zhang, Y., Williams, P.T., Yang, H. & Chen, H. (2018). Co-production of hydrogen and carbon nanotubes from real-world waste plastics: Influence of catalyst composition and operational parameters. Applied Catalysis B: Environmental, 221, 584597. https://doi.org/10.1016/j.apcatb.2017.09.035CrossRefGoogle Scholar
Zhang, Y., Cheng, H., Lu, X., Ding, W. & Zhou, G. (2009). Influence of rare earth promoters on the performance of Ni/Mg(Al)O catalysts for hydrogenation and steam reforming of toluene. Rare Metals, 28(6), 582589. https://doi.org/10.1007/s12598-009-0112-5CrossRefGoogle Scholar
Zhang, Z., Wang, W., Tian, G., Wang, Q. & Wang, A. (2018). Solvothermal evolution of red palygorskite in dimethyl sulfoxide/water. Applied Clay Science, 159, 1624. https://doi.org/10.1016/j.clay.2017.06.014CrossRefGoogle Scholar
Zhang, Z., Wang, W., Kang, Y., Wang, Q. & Wang, A. (2018). Structure evolution of brick-red palygorskite induced by hydroxylammonium chloride. Powder Technology, 327, 246254. https://doi.org/10.1016/j.powtec.2017.12.067CrossRefGoogle Scholar
Zhang, Y., Zou, X., Liu, H., Chen, Y., Dong, S., Ji, M., Chen, D., Xu, C., Xie, H., Zhu, C., Suib, S.L. & Chen, T. (2022). Comparative study of mineral with different structures supported Fe-Ni catalysts for steam reforming of toluene. Fuel, 315. https://doi.org/10.1016/j.fuel.2022.123253CrossRefGoogle Scholar
Zhang, S., Hu, W., Xiang, X., Xu, H., Shen, Z., Liu, Y., Xia, Q., Ge, Z., Wang, Y. & Li, X. (2022). Ni-Fe-Ce hydrotalcite-derived structured reactor as catalyst for efficient steam reforming of toluene. Fuel Processing Technology, 226. https://doi.org/10.1016/j.fuproc.2021.107077CrossRefGoogle Scholar
Zhou, C.-H., Shen, Z.-F., Liu, L.-H. & Liu, S.-M. (2011). Preparation and functionality of clay-containing films. Journal of Materials Chemistry, 21(39). https://doi.org/10.1039/c1jm11479dCrossRefGoogle Scholar
Zhou, S., Chen, Z., Gong, H., Wang, X., Zhu, T. & Zhou, Y. (2020). Low-temperature catalytic steam reforming of toluene as a biomass tar model compound over three-dimensional ordered macroporous Ni-Pt/Ce1−xZrxO2 catalysts. Applied Catalysis A: General, 607. https://doi.org/10.1016/j.apcata.2020.117859CrossRefGoogle Scholar
Zou, X., Chen, T., Liu, H., Zhang, P., Ma, Z., Xie, J. & Chen, D. (2017). An insight into the effect of calcination conditions on catalytic cracking of toluene over 3Fe8Ni/palygorskite: Catalysts characterization and performance. Fuel, 190, 4757. https://doi.org/10.1016/j.fuel.2016.11.038CrossRefGoogle Scholar
Zou, X., Chen, T., Zhang, P., Chen, D., He, J., Dang, Y., Ma, Z., Chen, Y., Toloueinia, P., Zhu, C., Xie, J., Liu, H. & Suib, S.L. (2018). High catalytic performance of Fe-Ni/Palygorskite in the steam reforming of toluene for hydrogen production. Applied Energy, 226, 827837. https://doi.org/10.1016/j.apenergy.2018.06.005CrossRefGoogle Scholar
Supplementary material: File

Ji et al. supplementary material

Ji et al. supplementary material

Download Ji et al. supplementary material(File)
File 474.2 KB