Skip to main content Accessibility help

Glauconite formation in lacustrine/palaeosol sediments, Isle of Wight (Hampshire Basin), UK

  • J. M. Huggett (a1) (a2) and J. Cuadros (a1)


The clay mineralogy and chemistry of a green lacustrine marl that has been pedogenically modified in the upper part was investigated in order to better understand the formation of low-temperature Fe-rich 10 Å clay. Twelve samples in a vertical sequence have been investigated using X-ray diffraction (XRD), chemical analysis, scanning electron microscopy (SEM) and laser particle size analysis. The clay assemblage has a range of overall illite-smectite (I-S) compositions (64–100%) resulting from several I-S phases that, for the sake of modelling, have been simplified to one to three I-S phases of increasing illitic content. Where the lacustrine marl has been pedogenically modified, the smectite-rich I-S is much reduced in abundance or absent and the 10 Å -rich component is both more abundant and more illitic. These assemblages are a consequence of illitization of detrital I-S in the lake and soil, and dissolution of other clays (kaolinite and chlorite) in the hypersaline lake. Interlayer K, octahedral Fe and octahedral + interlayer Mg increase with intensity of illitization (increase range 0.32–0.63, 0.68–1.67, 0.18–0.24 per O10(OH)2, respectively), first in the increasingly saline lake, and latterly as a result of wetting and drying in a gley soil. In the soil environment, reduction of Fe(III) to Fe(II) resulted in increased layer charge but, as by this stage very few smectite interlayers remained, this did not result in an equivalent increase in illite. Laser particle-size analysis, supported by SEM observation, shows the existence of a bimodal distribution of clay particle size (maxima at 0.2 and 1.5–1.8 μm) in which the finer fraction increases largely in the pedogenically affected samples, probably due to particle break-up caused by seasonal wetting and drying. This ‘dual action’ illitization, first in a hypersaline lake and latterly through wetting and drying, may be responsible for both the intensity of illitization and exceptionally high (for the Solent Group) Fe content of the authigenic illite. The chemical characteristics of the illitic I-S and the illite end-member correspond to glauconite. Hence, this is an example of onshore, non-pelletal glauconite formation.


Corresponding author


Hide All
Armenteros, I., Daley, B. & Garcia, E. (1997) Lacustrine and palustrine facies in the Bembridge Limestone (late Eocene, Hampshire Basin) of the Isle of Wight, southern England. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 111132.
Bailey, S.W. (1980) Summary of recommendations of AIPEA nomenclature committee. Clays and Clay Minerals, 28, 7378.
Bailey, S.W. (1986) Report of AIPEA Nomenclature Committee. Supplement to AIPEA Newsletter No. 22.
Besson, G., Glaeser, R. & Tchoubar, C. (1983) Le césium révélateur de structure des smectites. Clay Minerals, 18, 1119.
Chamley, H. (1989) Clay and geodynamics. Pp. 527561 in: Clay Sedimentology. Springer-Verlag. New York, USA.
Daley, B. (1973) The palaeoenvironment of the Bembridge Marls (Oligocene) of the Isle of Wight. Proceedings of the Geologists Association, 84, 8393.
Daley, B. (1999) Palaeogene sections on the Isle of Wight. A revision of their description and significance in the light of research undertaken over recent decades. Tertiary Research, 19, 169.
Deconinck, J.F., Strasser, A. & Debrabant, P. (1988) Formation of illitic minerals at surface temperatures in Purbeckian sediments (lower Berriasian, Swiss and French Jura). Clay Minerals, 23, 91103.
Eberl, D., Środoń, J. & Northrop, R. (1986) Potassium fixation in smectite by wetting and drying. Pp. 296326 in: ACS Symposium Series 323 (Davis, J.A. & Hayes, K.F., editors). American Chemical Society, Washington DC, USA.
El Albani, A., Meunier, A. & Fursich, F. (2005) Unusual occurrence of glauconite in a shallow marine lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France). Terra Nova, 17, 537544.
Fitzpatrick, E.A. (1980) Soils, their Formation, Classification and Distribution. Longman, London.
Gale, A.S., Huggett, J.M., Palike, H., Laurie, E., Hailwood, E., Hardenbol, J. & Jeffrey, P. (2006) Correlation of Eocene-Oligocene marine and continental records: orbital cyclicity, magneto- and sequence stratigraphy of the Solent Group, Isle of Wight, UK. Journal of the Geological Society, 163, 401413.
Garrells, R.M. & Christ, C.L. (1965) Solutions, Minerals, and Equilibria. Harper and Row, New York, USA.
Hay, R.L., Guldman, S.G., Mathews, J.C., Lander, R.H., Duffm, M.E. & Kyser, T.K. (1991) Clay mineral diagenesis in core km-3 of Searles Lake, California. Clays and Clay Minerals, 39, 8496.
Hover, V.C. & Ashley, G.M. (2003) Geochemical signatures of paleodepositional and diagenetic environments: a STEM/AEM study of authigenic clay minerals from an arid rift basin, Olduvai Gorge, Tanzania. Clays and Clay Minerals, 51, 231251.
Huggett, J.M. (2005) Glauconites. Pp. 542548 in: Encyclopedia of Geology Vol. 3. (Selley, R.C., L.Cocks, R.M. & Plimer, I.R., editors). Elsevier. Amsterdam, The Netherlands.
Huggett, J.M. & Cuadros, J. (2005) Low-temperature illitization of smectite in the late Eocene and early Oligoeene of the Isle of Wight (Hampshire basin), UK. American Mineralogist, 90, 11921202.
Huggett, J.M. & Gale, A.S. (1997) Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK. Journal of the Geological Society, 154, 897912.
Huggett, J.M., Gale, A.S. & Clauer, N. (2001) Nature and origin of non-marine 10 Å clay from the Late Eocene and Early Oligoeene of the Isle of Wight (Hampshire Basin), UK. Clay Minerals, 36, 447464.
Ingles, M. & Ramos-Guerrero, E. (1995) Sedimentological control on the clay mineral distribution in the marine and non-marine Palaeogene deposits of Mallorca (Western Mediterranean). Sedimentary Geology, 94, 229243.
Mamy, J. & Gaultier, J.P. (1975) Etude de l'éevolution de Pordre cristallin dans la montmorillonite en relation avec la diminution d'échangeabilité du potassium (Abstract). Proceedings of the 5th International Clay Conference, Mexico City, Mexico, 149-155.
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals, 378 pp. Oxford University Press, Oxford.
Odin, G. (1988) Green Marine Clays. Developments in Sedimentology 45, Elsevier, Amsterdam, The Netherlands.
Plançon, A. (2002) New modeling of X-ray diffraction by disordered lamellar structures, such as phyllosilicates. American Mineralogist, 87, 16721677.
Reynolds, R.C. Jr. & Reynolds, R.C. III (1996) NEWMOD: The Calculation of One-Dimensional X-ray Diffraction Patterns of Mixed-Layered Clay Minerals. Computer Program. 8 Brook Road, Hanover, New Hampshire, USA.
Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Miiller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z. & Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 905912.
Robinson, D. & Wright, V.P. (1987) Ordered illite-smectite and kaolinite-smectite: pedogenic minerals in a lower Carboniferous paleosol sequence, South Wales. Clay Minerals, 22, 109118.
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 1167 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, (Wilson, M.J., editor), Chapman & Hall, London.
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments — a review. Earth-Science Reviews, 21, 251293.
Singer, A. & Staffers, P. (1980) Clay mineral diagenesis in two East African lake sediments. Clay Minerals, 15, 291307.
Siyuan, S. & Stucki, J. (1994) Effects of iron oxidation state on the fate and behaviour of potassium in soils. Pp. 173185 in: Soil Testing: Prospects for Improving Nutrient Recommendations. Soil Science Society of America Special Publication 40.
Smith, B. (1994) Characterization of poorly ordered minerals by selective chemical methods. Pp. 333357 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor), Chapman & Hall, London.
Stucki, J. (1997) Redox processes in smectites: Soil environmental significance. Advances in GeoEcology, 30, 395406.
Šuchá, V. & Širánová, V. (1991) Ammonium and potassium fixation in smectite by wetting and drying. Clays and Clay Minerals, 39, 556559.
Weiszburg, T.G., Toth, E. & Beran, A. (2004) Celadonite, the 10Å green clay mineral of the manganese carbonate ore, Úrkút, Hungary. Ada Mineralogica Petrographica, 45, 6580.
White, R.E. (1997) Principles and Practice of Soil Science. Blackwell Science Ltd., Oxford.


Related content

Powered by UNSILO

Glauconite formation in lacustrine/palaeosol sediments, Isle of Wight (Hampshire Basin), UK

  • J. M. Huggett (a1) (a2) and J. Cuadros (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.