Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T11:12:13.125Z Has data issue: false hasContentIssue false

Geochemical and mineralogical characterization of smectites from the Ventzia basin, western Macedonia, Greece

Published online by Cambridge University Press:  14 February 2019

Stephan Kaufhold*
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
George D. Chryssikos
Affiliation:
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
George Kacandes
Affiliation:
Geohellas S.A., Pentelis 8A, Athens 17564, Greece
Vassilis Gionis
Affiliation:
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
Kristian Ufer
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
Reiner Dohrmann
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany
*

Abstract

Three samples of bulk smectite clay from the Pilori and Velanida bentonite deposits of the Ventzia basin, western Macedonia, Greece, were characterized in detail. Chemical analyses and X-ray diffraction (XRD; Rietveld method) showed that the samples are rich in Fe and Mg (8–13 mass% and 6–10 mass% as oxides, respectively) and contain ~60–65 mass% smectite. The high Fe and Mg content as well as the high Cr (0.3–0.5 mass%) and Ni content (0.1–0.3 mass%) are consistent with the formation of these clays from ultramafic precursor sediments of the Vourinos ophiolite complex. Both XRD and infrared spectroscopy indicate the presence of other clay minerals besides smectite, such as minor amounts of kaolinite, trioctahedral-rich palygorskite, serpentine and talc (depending on the sample). The position of the d060 reflection (1.51–1.52 Å) is compatible with either high Fe content or partial trioctahedral character, or probably both. The predominance of ferruginous smectite or nontronite was confirmed by infrared spectroscopy, but the minor presence of a trioctahedral magnesian smectite in some of the samples cannot be excluded. Layer charge densities, determined by the νO-D (oxygen-deuterium IR-stretching) method calibrated against the structural formula method, are in the 0.48–0.52 eq/FU range. Various methods point to the existence of a significant amount of tetrahedral charge, which is typical of ferruginous smectites. The major exchangeable cation is Mg2+ (73–90%), which represents a special property of these materials compared with other bentonites.

Type
Research Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Editor: George Christidis

References

Baron, F. & Petit, S. (2016) Interpretation of the infrared spectra of lizardite–nepouite series in the near- and mid-infrared range. American Mineralogist, 101, 423430.Google Scholar
Bishop, J., Madejová, J., Komadel, P. & Fröschl, H. (2002) The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Minerals, 37, 607616.Google Scholar
Bukas, V.J., Tsampodimou, M., Gionis, V. & Chryssikos, G.D. (2013) Synchronous ATR infrared and NIR spectroscopy investigation of sepiolite upon drying. Vibrational Spectroscopy, 68, 5160.Google Scholar
Cahoon, H.P. (1954) Saponite near Milford, Utah. American Mineralogist, 54, 10261033.Google Scholar
Casal, B., Merino, J., Ruiz-Hitzky, E., Gutierrez, E. & Alvarez, A. (1997) Characterization, pillaring and catalytic properties of a saponite from Vicálvaro, Madrid, Spain. Clay Minerals, 32, 4154.Google Scholar
Christidis, G. (2006) Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocks – a case study from the Troodos Ophiolite Complex, Cyprus. American Mineralogist, 91, 685701.Google Scholar
Christidis, G.E. (2008) Do bentonites have contradictory characteristics? An attempt to answer unanswered questions. Clay Minerals, 43, 515529.Google Scholar
Christidis, G. & Huff, W. (2009) Geological aspects and genesis of bentonites. Elements, 5, 9398.Google Scholar
Christidis, G.E., Katsiki, P., Pratikakis, A. & Kacandes, G. (2010) Rheological properties of palygorskite-smectite suspensions from the Ventzia basin, W. Macedonia, Greece. Bulletin of the Geological Society of Greece, 43, 25522569.Google Scholar
Chryssikos, G.D., Gionis, V., Kacandes, G.H., Stathopoulou, E.T., Suárez, M., García-Romero, E. & Sánchez del Río, M., (2009) Octahedral cation distribution in Palygorskite. American Mineralogist, 94, 200203.Google Scholar
Cuevas, J., De la Villa, R.V., Ramirez, S., Petit, S., Meunier, A., Leguey, S. (2003) Chemistry of Mg smectites in lacustrine sediments from the Vicalvaro sepiolite deposit, Madrid neogene basin (Spain). Clays and Clay Minerals, 51, 457472.Google Scholar
Dieng, M.A. (2005) Der Wasseraufnahmeversuch nach DIN 18132 in einem neu entwickelten Gerät. Bautechnik, 82, 2832.Google Scholar
Dieng, M.A. (2006) Bestimmungsmethode der Konsistenzgrenzen mittels Wasseraufnahmeversuchen. Bautechnik, 83, 492496.Google Scholar
Dohrmann, R. & Kaufhold, S. (2009) Three new, quick CEC methods for determining the amounts of exchangeable calcium cations in calcareous clays. Clays and Clay Minerals, 57, 338352.Google Scholar
Dohrmann, R. & Kaufhold, S. (2014) Cation exchange and mineral reactions observed in MX 80 buffers samples of the prototype repository in situ experiment in Äspö, Sweden. Clays and Clay Minerals, 62, 357373.Google Scholar
Dohrmann, R. & Kaufhold, S. (2017) Characterisation of the second package of the alternative buffer material experiment (ABM) – II. Exchangeable cation population rearrangement. Clays and Clay Minerals, 65, 104121.Google Scholar
Ferrage, E., Martin, F., Micoud, P., Petit, S., de Parseval, P., Beziat, D. & Ferret, J. (2003) Cation site distribution in clinochlores: a NIR approach. Clay Minerals, 38, 329338.Google Scholar
Gates, W.P. (2005) Infrared spectroscopy and the chemistry of dioctahedral smectites. Pp. 126128 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (Kloprogge, J.T., editor). The Clay Minerals Society, Chantilly, VA, USA.Google Scholar
Gates, W.P. (2008) Cation mass–valence sum (CM-VS) approach to assigning OH-bending bands in dioctahedral smectites. Clays and Clay Minerals, 56, 1022.Google Scholar
Gionis, V., Kacandes, G.H., Kastritis, I.D. & Chryssikos, G.D. (2006) On the structure of palygorskite by mid and near-infrared spectroscopy. American Mineralogist, 91, 11251133.Google Scholar
Gionis, V., Kacandes, G.H., Kastritis, I.D. & Chryssikos, G.D. (2007) Combined near-infrared and XRD investigation of the octahedral sheet composition of palygorskite. Clays and Clay Minerals, 55, 543553.Google Scholar
Hofmann, U. & Klemen, R. (1950) Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung. Zeitschrift für Anorganische Chemie, 262, 9599.Google Scholar
Karnland, O., Olsson, S., Dueck, A., Birgersson, M., Nilsson, U., Hernan-Håkansson, T., Pedersen, K., Nilsson, S., Eriksen, T.E. & Rosborg, B. (2009) Long term test of buffer material at the Äspö Hard Rock Laboratory, MX80 (LOT) project – final report on the A2 test parcel. Technical Report TR-09-29. Available at: www.skb.se/upload/publications/pdf/TR-09-29.pdfGoogle Scholar
Kastritis, I.D., Mposkos, E. & Kacandes, G.H. (2003) The palygorskite and Mg-Fe smectite clay deposits of the Ventzia basin, western Macedonia, Greece. Pp. 891894 in Mineral Exploration and Sustainable Development, Proceedings of the 7th SGA Meeting (Eliopoulos, D. et al. , editors). Millpress, Rotterdam, The Netherlands.Google Scholar
Kaufhold, S. & Dohrmann, R. (2003) Beyond the Methylene Blue method: determination of the smectite content using the Cu-trien method. Zeitschrift für Angewandte Geologie, 2, 1318.Google Scholar
Kaufhold, S. & Dohrmann, R. (2008) Comparison of the traditional Enslin–Neff method and the modified Dieng method for measuring water-uptake capacity. Clays and Clay Minerals, 56, 686692.Google Scholar
Kaufhold, S., Dohrmann, R., Klinkenberg, M., Siegesmund, S. & Ufer, K. (2010) N2-BET specific surface area of bentonites. Journal of Colloid and Interface Science, 349, 275282.Google Scholar
Kaufhold, S., Dohrmann, R., Stucki, J. & Anastácio, A.S. (2011) Layer charge density of montmorillonite – closing the gap between structural formula method and alkyl ammonium method. Clays and Clay Minerals, 59, 200211.Google Scholar
Kaufhold, S., Dohrmann, R., Sandén, T., Sellin, P. & Svensson, D. (2013) Mineralogical investigations of the alternative buffer material test – I. Alteration of bentonites. Clay Minerals, 48, 199213.Google Scholar
Kaufhold, S., Stucki, J.W., Finck, N., Steininger, R., Zimina, A., Dohrmann, R., Ufer, K., Pentrák, M. & Pentráková, L. (2017a) Tetrahedral charge and Fe content in dioctahedral smectites. Clay Minerals, 52, 5165.Google Scholar
Kaufhold, S., Dohrmann, R., Götze, N. & Svensson, D. (2017b) Characterisation of the second package of the alternative buffer material experiment (ABM) – I. Mineralogical reactions. Clays and Clay Minerals, 65, 2741.Google Scholar
Kaufhold, S., Kremleva, A., Krüger, S., Rösch, N., Emmerich, K. & Dohrmann, R. (2017c) Crystal-chemical composition of dicoctahedral smectites: an energy-based assessment of empirical relations. ACS Earth Space Chemistry, 1, 629636.Google Scholar
Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E. & Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579599.Google Scholar
Kuligiewicz, A., Derkowski, A., Sczerba, M., Gionis, V. & Chryssikos, G.D. (2015a) Revisiting the infrared spectrum of the water–smectite interface. Clays and Clay Minerals, 63, 1529.Google Scholar
Kuligiewicz, A., Derkowski, A., Emmerich, K., Christidis, G.E., Tsiantos, C., Gionis, V. & Chryssikos, G.D. (2015b) Measuring the layer charge of dioctahedral smectite by O-D vibrational spectroscopy. Clays and Clay Minerals, 63, 443456.Google Scholar
Madejová, J. & Komadel, P. (2001) Baseline studies of the Clay Minerals Society source clays: infrared methods. Clays and Clay Minerals, 49, 410432.Google Scholar
Madejová, J., Komadel, P. & Cicel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319326.Google Scholar
Madejová, J., Keckes, J., Palkova, H. & Komadel, P. (2002) Identification of components in smectite/kaolinite mixtures. Clay Minerals, 37, 377388.Google Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386388.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd Edition. Oxford University Press, New York, NY, USA.Google Scholar
Patterson, S.H. (1969) ‘Clay’, in Arizona Bureau of Mines Bulletin, 180, USGS Bulletin, 71, 329330.Google Scholar
Pelletier, M., Michot, L.J., Humbert, B., Barrès, O., D'Espinose de la Caillerie, J.-B. & Robert, J.-L. (2003) Influence of layer charge on the hydroxyl stretching of trioctahedral clay minerals: a vibrational study of synthetic Na- and K-saponites. American Mineralogist, 88, 18011808.Google Scholar
Petit, S., Caillaud, J., Righi, D., Madejová, J., Elsass, F. & Köster, H.M. (2002) Characterization and crystal chemistry of an Fe-rich montmorillonite from Öldberg, Germany. Clay Minerals, 37, 283297.Google Scholar
Petit, S., Martin, F., Wiewora, A., de Parseval, P. & Decarreau, A. (2004) Crystal chemistry of talc: a near infrared (NIR) spectroscopic study. American Mineralogist, 89, 319326.Google Scholar
Petit, S., Decarreau, A., Gates, W., Andrieux, P. & Grauby, O. (2015) Hydrothermal synthesis of dioctahedral smectites: the Al–Fe3+ chemical series. Part II: crystal-chemistry. Applied Clay Science, 104, 96105.Google Scholar
Plötze, M., Kahr, G., Dohrmann, R. & Weber, H. (2007) Hydro-mechanical, geochemical and mineralogical characteristics of the bentonite buffer in a heater experiment. The HE-B project at the Mont Terri rock laboratory. Physics and Chemistry of the Earth, 32, 730740.Google Scholar
Post, J.L. (1984) Saponite from near Ballarat, California. Clays and Clay Minerals, 32, 147153.Google Scholar
Post, J.L. & Noble, P.N. (1993) The near-infrared combination band frequencies of dioctahedral smectites, micas and illites. Clays and Clay Minerals, 41, 639644.Google Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 1167 in Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor). Chapman & Hall, London, UK.Google Scholar
Stathopoulou, E.T., Suárez, M., García-Romero, E., del Río M., Sánchez, Kacandes, G.H., Gionis, V. & Chryssikos, G.D. (2011) Trioctahedral entities in palygorskite: near-infrared evidence for sepiolite-palygorskite polysomatism. European Journal of Mineralogy, 23, 567576.Google Scholar
Svensson, D. (2015) The Bentonite Barrier – Swelling Properties, Redox Chemistry and Mineral Evolution Centre for Analysis and Synthesis. PhD thesis, Lund University, Lund, Sweden.Google Scholar
Szczerba, M. & Ufer, K. (2018) New model of ethylene glycol intercalate in smectites for XRD modelling. Applied Clay Science, 153, 113123.Google Scholar
Szczerba, M., Kuligiewicz, A., Derkowski, A., Gionis, V., Chryssikos, G.D. & Kalinichev, A.G. (2016) Structure and dynamics of water–smectite interfaces: hydrogen bonding and the origin of the sharp O-Dw/O-Hw infrared band from molecular simulations. Clays and Clay Minerals, 64, 452471.Google Scholar
Tsampodimou, M., Bukas, V.-J., Stathopoulou, E.T, Gionis, V. & Chryssikos, G.D. (2015) Near-infrared investigation of folding sepiolite. American Mineralogist, 100, 195202.Google Scholar
Tsiantos, C., Gionis, V. & Chryssikos, G.D. (2018) Smectite in bentonite: near infrared systematics and estimation of layer charge. Applied Clay Science, 160, 8187.Google Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R. & Kaufhold, S. (2008) Quantitative phase analysis of bentonites by the Rietveld method. Clays and Clay Minerals, 56, 272282.Google Scholar
Wilkins, R.W.T. & Ito, J. (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 16491661.Google Scholar
Zhang, M., Redfern, S.A.T., Salje, E.K.H., Carpenter, M.A. & Wang, L. (2010) H2O and the dehydroxylation of phyllosilicates: an infrared spectroscopic study. American Mineralogist, 95, 16861693.Google Scholar
Zviagina, B.B., McCarty, D.K., Środón, J. & Drits, V.A. (2004) Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals, 52, 399410.Google Scholar
Supplementary material: File

Kaufhold et al. supplementary material

Figures S1 and S2

Download Kaufhold et al. supplementary material(File)
File 1.8 MB