Hostname: page-component-68945f75b7-qf55q Total loading time: 0 Render date: 2024-08-06T04:38:49.419Z Has data issue: false hasContentIssue false

Experimental alteration of vivianite to lepidocrocite in a calcareous medium

Published online by Cambridge University Press:  09 July 2018

R. Roldán*
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
V. Barrón
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
J . Torrent*
Affiliation:
Departamento de Ciencias y Recursos Agrícolas y Forestales, Universidad de Córdoba, Apdo. 3048, 14080 Córdoba, Spain
*

Abstract

Vivianite [Fe3(PO4)2·8H2O] is easily oxidized in the presence of air. In this work, we studied the oxidation and incongruent dissolution of vivianite in a calcareous medium containing an anion-exchange resin (AER) that acted as a sink for phosphate. Freshly prepared vivianite suspensions with calcite sand and an AER membrane were oxidized and stirred by bubbling air or CO2-free O2. Experiments were finished when oxidation rate and P removal by the AER became slow, which was at 53 days (air system) or 28 days (CO2free O2 system). At these times, the respective values of the Fe(II)/total Fe ratio were 0.29 and 0.12, and the respective values of the atomic P/Fe ratio were 0.15 and 0.11. The final product of the oxidation was poorly crystalline lepidocrocite in the form of thin (1 ­ 5 nm), irregular lamellae that were soluble in acid oxalate. The unit-cell edge lengths of this lepidocrocite were a= 0.3117, b= 1.2572, and c= 0.3870, vs. a= 0.3071, b= 1.2520 and c= 0.3873 nm for the reference lepidocrocite. The lepidocrocite lamellae contained occluded P (P/Fe atomic ratio = 0.03 ­ 0.04). The results of this and a previous study made us hypothesize that this occluded P is structural and occupies tetrahedral sites adjacent to the empty octahedral sites in the sheets extending on ﹛010﹜.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amthauer, G. & Rossman, G.R. (1984) Mixed-valence of iron in minerals with cation clusters. Physics and Chemistry of Minerals, 11, 3751.CrossRefGoogle Scholar
Barrón, V. & Torrent, J. (1986) Use of the Kubelka ­ Munk theory to study the influence of iron oxides on soil colour. Journal of Soil Science, 37, 499510.CrossRefGoogle Scholar
Bish, D.L. (1993) Studies of clays and clay minerals using X-ray powder diffraction and the Rietveld method. Pp. 7921 in: Computer Applications to X-ray Diffraction Analysis of Clay Minerals (R.C. Reynolds & Walker, J.R., editors). The Clay Minerals Society, Boulder, Colorado, USA.Google Scholar
Carlson, L. & Schwertmann, U. (1990) The effect of CO2 and oxidation rate on the formation of goethite versus lepidocrocite from an Fe(II) system at pH 6 and 7. Clay Minerals, 25, 6571.CrossRefGoogle Scholar
Cornell, R.M. & Schwertmann, U. (1996) The Iron Oxides. VCH, Weinheim, Germany.Google Scholar
Cumplido, J., Barrón, V. & Torrent, J. (2000) Effect of phosphate on the formation of nanophase lepidocrocite from Fe(II) sulfate. Clays and Clay Minerals, 48, 503510.CrossRefGoogle Scholar
Denisova, N.V. (1973) Use of peat vivianite on leached chernozems of western Siberia. Agrokhimiya, 1, 8791.Google Scholar
Eynard, A., del Campillo, M.C., Barrón, V. & Torrent, J. (1992) Use of vivianite (Fe3(PO4)2·8H2O) to prevent iron chlorosis in calcareou s soils. Fertilizer Research, 31, 6167.CrossRefGoogle Scholar
Fraps, G.S. (1922) Availability of some nitrogenous and phosphat ic mat erials. Texas Agr ic ul tural Experimental Station Bulletin 285.Google Scholar
Gálvez, N., Barrón, V. & Torrent, J. (1999) Effect of phosphate on the crystalliza tion of hematite, goethite, and lepidocrocite from ferrihydrite. Clays and Clay Minerals, 47, 304311.CrossRefGoogle Scholar
Hansen, H.C.B. & Poulsen, I.F. (1999) Interaction of synthetic sulfate green rust with phosphate and the crystallization of vivianite. Clays and Clay Minerals, 47, 312318.CrossRefGoogle Scholar
Iglesias, I., Dalmau, R., Marcé, X., del Campillo, M.C., Barrón, V. & Torrent, J. (1998) Diversos fosfatos de hierro presentan eficacia prolongada en la prevención de la clorosis férrica en peral (cv. Blanquilla). Fruticultura Profesional, 99, 7687.Google Scholar
Jensen, M.B., Hansen, H.C.B., Nielsen, N.E. & Magid, J. (1998) Phosphate mobilization and immobilization in 2 soils incubated under simulated reducing conditions. Acta Agricultura Scandinavica, Section B, 48, 1117.Google Scholar
Kostov, I. (1968) Mineralogy. Oliver and Boyd, Edinburgh, UK.Google Scholar
Larson, A.C. & von Dreele, R.B. (1988) GSAS. Generalized structure and analysis systems: Los Alamos National Laboratory Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.Google Scholar
McCammon, C.A. & Burns, R.G. (1980) The oxidation mechanism of vivianite as studied by Mössbauer spectroscopy. American Mineralogist, 65, 361366.Google Scholar
Murphy, J. & Riley, J.P. (1962) A modified single solution method for the determination of phosphate in natural waters. Analitica Chimica Acta, 27, 3136.CrossRefGoogle Scholar
Oles, A., Szytula, A. & Wanic, A. (1970) Neutron diffraction study of γ-FeOOH. Physica Status Solidi, 41, 173177.CrossRefGoogle Scholar
Olson, R.V. & Jr.Ellis, R., (1982) Iron. Pp. 301312 in: Methods of Soil Analysis. Part 2. 2nd edition (Page, A.L., Miller, R.H. & Keeney, D.R., editors). Agronomy Society of America and the Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Pratt, A.R. (1997) Vivianite auto-oxidation. Physics and Chemistry of Minerals, 25, 2427.CrossRefGoogle Scholar
Rodgers, K.A. (1987) Baricite, a further occurrence. Neues Jahrbuch für Mineralogie Monatshefte, 183192.Google Scholar
Ross, S.D. (1974) Phosphate and other oxy-anions of Group V. Pp. 383422 in. The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London.CrossRefGoogle Scholar
Rouzies, D. & Millet, J.M.M. (1993) Mössbauer study of synthetic oxidized vivianite at room temperature. Hyperfine Interactions, 77, 1928.CrossRefGoogle Scholar
Scheinost, A.C., Chavernas, A., Barrón, V. & Torrent, J. (1998) Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxides in soils. Clays and Clay Minerals, 46, 528536.CrossRefGoogle Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit sauer Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, 105, 194202.CrossRefGoogle Scholar
Sparks, D.L. (1988) Kinetics of Soil Chemical Processes. Academic Press, San Diego, California, USA.Google Scholar
Vempati, R.K. & Loeppert, R.H. (1986) Synthetic ferrihydrite as a potential iron amendment in calcareous soils. Journal of Plant Nutrition, 9, 10391052.CrossRefGoogle Scholar