Skip to main content Accessibility help
×
Home

Evaluation of the energy barrier for dehydration of homoionic (Li, Na, Cs, Mg, Ca, Ba, Alx(OH)y z+ and La)-montmorillonite by a differentiation method

  • M. Zabat (a1) and H. Van Damme (a1)

Abstract

The thermal energy necessary for the removal of molecular water from Li+-, Na+-, Cs+-, Mg2+-, Ca2+-, Ba2+-, Alx(OH)y z+- and La3+-homoionic montmorillonite powders was determined by thermogravimetric analysis under atmospheric pressure. The weight loss curves and their derivatives exhibit one or several features related to the various populations of water molecules. The activation energy for water removal, which is the sum of the adsorption energy and the activation energy for diffusion, was calculated in each case using a simple first-order differentiation method. The results allow the physisorbed water and the water coordinated to the cations to be clearly separated. For the later population and with the exception of the Na-clay, a good correlation was found between the temperatures and activation energies for water removal and the polarizing power of the cations. Comparison with the results of mechanical tests performed on similar samples suggests that the creep of smectite clays is not controlled by mobility of the individual water molecules but by the mobility of the interlayer cations surrounded by their hydration shell.

Copyright

Corresponding author

References

Hide All
Bordère, S., Rouquerol, F., Rouquerol, J., Estienne, J. & Floreancig, A. (1990) Kinetical possibilities of controlled transformation rate thermal analysis (CRTA). J. Thermal Anal. 36, 1651–1668.
Brindley, G.W. & Sempels, R.E. (1977) Preparation and properties of some hydroxy-aluminium beidellites. Clay Miner. 12, 229–237.
Dzidic, J. & Kebarle, P. (1970) Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M+(H2O)n-1 + H2O = M+(H2O)n . J. Phys. Chem. 71, 1466–1473.
Freeman, E.S. & Carroll, B. (1958) The application of thermoanalytical techniques to reaction kinetics. J. Phys. Chem. 62, 394–397.
Güven, N. (1992) Molecular aspects of clay-water interactions. Pp. 2–79 in: Clay-Water Interface and its Rheological Implications (Güven, N. & Pollastro, R.M., editors). The Clay Minerals Society, Boulder, Colorado, USA.
Mackenzie, R.C. (1981) Thermoanalytical methods in clay studies. Pp. 5–29 in: Advanced Techniques for Clay Mineral Analysis (Fripiat, J.J., editor). Elsevier, Amsterdam.
Plée, D., Gatineau, L. & Fripiat, J.J. (1987) Pillaring processes of smectites with and without tetrahedral substitution. Clays Clay Miner. 35, 81–88.
Poinsignon, C., Yvon, J. & Mercier, R. (1982) Dehydration energy of the exchangeable cations in montmorillonite–a DTA study. Israel J. Chem. 22, 253–255.
Rouquerol, J. (1989) Controlled transformation rate thermal analysis. Thermochim. Ada, 144, 209–218
Van Olphen, H. (1963) An Introduction to Clay Colloid Chemistry. Wiley Interscience, New York.
Zabat, M., Vayer-Besancon, M., Harba, R., Bonnamy, S. & Van Damme, H. (1997) Surface topography and mechanical properties of smectite films. Progr. Colloid Polym. Sci. 105, 96–102.

Keywords

Evaluation of the energy barrier for dehydration of homoionic (Li, Na, Cs, Mg, Ca, Ba, Alx(OH)y z+ and La)-montmorillonite by a differentiation method

  • M. Zabat (a1) and H. Van Damme (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed