Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T07:14:26.351Z Has data issue: false hasContentIssue false

Effects of clay activation and amine chain length on silica–palygorskite heterostructure properties

Published online by Cambridge University Press:  27 February 2023

Lilya Boudriche*
Affiliation:
Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, BP 384 Bou-Ismail, RP 42004 Tipaza, Algeria
Faïza Bergaya
Affiliation:
Interface, Confinement, Matériaux et Nanostructures (ICMN), CNRS – Université d'Orléans, 1b rue de la Férollerie, 45071 Orléans, France
Amel Boudjemaa
Affiliation:
Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, BP 384 Bou-Ismail, RP 42004 Tipaza, Algeria

Abstract

Various approaches have been used for the preparation of heterostructured materials based on clay minerals, with numerous potential applications offered by the resulting functional materials. In this study, a fibrous clay mineral (palygorskite) and a tetraethyl orthosilicate reagent were used to obtain silica–palygorskite heterostructures. The aim was to highlight the influence of two factors during the preparation process: the effect of acid activation pre-treatment of the palygorskite with HCl and the effect of varying the length of the amine chains used – dodecylamine and butylamine – on the formation and development of silica nanoparticles on the surface of the palygorskite fibres. The silica–palygorskite heterostructures were obtained after the removal of the organic templates by calcination at 500°C. The textural and structural properties of the silica–palygorskite heterostructured samples were determined using various experimental characterization techniques, such as X-ray diffraction, transmission electron microscopy, gas adsorption and Fourier-transform infrared spectroscopy. The experimental variables targeted in this study appeared to have a significant effect on the textural properties of the silica–palygorskite heterostructure obtained. The great specific surface area and the mesoporous, microporous and ultramicroporous volumes as determined using nitrogen and/or carbon dioxide gas adsorption confirm the benefit of combining the acid activation pre-treatment of the fibrous clay mineral with the use of a long-chain amine co-surfactant (dodecylamine). The resulting silica–palygorskite heterostucture has a great specific surface area (628 m2 g–1) and a well-developed total pore network (VN2 = 0.24 cm3 g–1; Vultra (CO2) = 0.18 cm3 g–1). This material will be tested for the removal of volatile organic compounds at low concentrations.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chun Hui Zhou

References

Akkari, M., Aranda, P., Ben Haj Amara, A. & Ruiz-Hitzky, E. (2018) Clay-nanoarchitectures as photocatalysts by in situ assembly of ZnO nanoparticles and clay minerals. Journal of Nanoscience and Nanotechnology, 18, 223233.CrossRefGoogle ScholarPubMed
Aranda, P. & Ruiz-Hitzky, E. (2018) Immobilization of nanoparticles on fibrous clay surfaces: towards promising nanoplatforms for advanced functional applications. Chemical Record, 18, 11251137.CrossRefGoogle ScholarPubMed
Belaroui, L. S., Ouali, A., Bengueddach, A., Lopez Galindo, A. & Peña, A. (2018) Adsorption of linuron by an Algerian palygorskite modified with magnetic iron. Applied Clay Science, 164, 2633.CrossRefGoogle Scholar
Belver, C., Aranda, P., Martín-Luengo, M. A. & Ruiz-Hitzky, E. (2012) New silica/alumina–clay heterostructures: properties as acid catalysts. Microporous and Mesoporous Materials, 147, 157166.CrossRefGoogle Scholar
Belver, C., Aranda, P. & Ruiz-Hitzky, E. (2013) Silica–alumina/sepiolite nanoarchitectures. Journal of Material Chemistry A, 1, 74777487.CrossRefGoogle Scholar
Blanco, C., Gonzalez, F., Pesquera, C. & Benito, I. (1989) Differences between one aluminic palygorskite and another magnesic by infrared spectroscopy. Spectroscopy Letters, 6, 659673.CrossRefGoogle Scholar
Boudriche, L., Hamdi, B., Kessaissia, Z., Calvet, R., Chamayou, A., Dodds, J. D. & Balard. H. (2010) Assessment of the surface properties of milled palygorskite using inverse gas chromatography. Clays and Clay Minerals, 58, 143153.CrossRefGoogle Scholar
Boudriche, L., Calvet, R., Hamdi, B. & Balard, H. (2011) Effect of acid treatment on surface properties evolution of palygorskite clay: an application of inverse gas chromatography. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 392, 4554.CrossRefGoogle Scholar
Boudriche, L., Calvet, R., Hamdi, B. & Balard, H. (2012) Surface properties evolution of palygorskite by IGC analysis as a function of thermal treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 399, 110.CrossRefGoogle Scholar
Bradley, W.F. (1940) The structural scheme of palygorskite. American Mineralogist, 25, 405410.Google Scholar
Cecilia, J.A., Garcıa-Sancho, C., Vilarrasa-Garcıa, E., Jimenez-Jimenez, J. & Rodriguez-Castellon, E. (2018) Synthesis, characterization, uses and applications of porous clays heterostructures: a review. Chemical Record, 18, 121.CrossRefGoogle Scholar
Chahi, A., Petit, S. & Decarreau, A. (2002) Infrared evidence of dioctahedral–trioctahedral site occupancy in palygorskite. Clays and Clay Minerals, 50, 306313.CrossRefGoogle Scholar
Dai, F., Guo, J., He, Y., Song, P. & Wang, R. (2021) Enhanced thermal stability and adsorption performance of MIL-53(Fe)@ montmorillonite. Clay Minerals, 56, 99107.CrossRefGoogle Scholar
García-Romero, E., Suárez-Barrios, M. & Bustillo-Revuelta, M.A. (2004) Characteristics of a Mg-palygorskite in Miocene rocks, Madrid Basin (Spain). Clays and Clay Minerals, 52, 484494.CrossRefGoogle Scholar
Gómez-Avilés, A., Aranda, P., Fernandes, F.M., Belver, C. & Ruiz-Hitzky, E. (2013) Silica–sepiolite nanoarchitectures. Journal of Nanoscience and Nanotechnology, 13, 28972907.CrossRefGoogle ScholarPubMed
González-Alfaro, Y., Aranda, P., Fernandes, F.M., Wicklein, B., Darder, M. & Ruiz-Hitzky, E. (2011) Multifunctional porous materials through ferrofluids. Advanced Materials, 23, 52245228.CrossRefGoogle ScholarPubMed
Gonzalez, F., Pesquera, C., Blanco, C., Benito, I., Mendioroz, S. & Pajares, J. A. (1989) Structural and textural evolution of Al- and Mg-rich palygorskites, I. Under acid treatment. Applied Clay Science, 4, 373388.CrossRefGoogle Scholar
Guggenheim, S. & Krekeler, M.P.S. (2011) The structure and microtextures of the palygorskite–sepiolite group minerals. Pp. 332 in: Developments in Palygorskite–Sepiolite Research. A New Outlook on These Nanomaterials (Galan, E. & Singer, A., editors). Elsevier BV, Oxford.CrossRefGoogle Scholar
Habibi, A., Belaroui, L.S., Bengueddach, A., López Galindo, A., Sainz Díaz, C.I. & Peña, A. (2018) Adsorption of metronidazole and spiramycin by an Algerian palygorskite. Effect of modification with tin. Microporous and Mesoporous Materials, 268, 293302.CrossRefGoogle Scholar
Kooli, F., Liu, Y., Hbaieb, K. & Al-Faze, R. (2017) Preparation and catalytic activities of porous clay heterostructures from aluminium-intercalated clays: effect of Al content. Clay Minerals, 52, 521535.CrossRefGoogle Scholar
Mendelovici, E. (1973) Infrared study of palygorskite and HCl treated palygorskite. Clays and Clay Minerals, 21, 115119.CrossRefGoogle Scholar
Olejniczak, Z., Leczka, M., Cholewa-Kowalska, K., Wojtach, K., Rokita, M. & Mozgawa, W. (2005) 29Si MAS NMR and FTIR study of inorganic–organic hybrid gels. Journal of Molecular Structure, 744, 465471.CrossRefGoogle Scholar
Ouali, A., Belaroui, L.S., Bengueddach, A., Galindo, A.L. & Peña, A. (2015) Fe2O3–palygorskite nanoparticles, efficient adsorbates for pesticide removal. Applied Clay Science, 115, 6775.CrossRefGoogle Scholar
Palkova, H., Madejova, J., Zimowska, M. & Serwicka, E.M. (2010) Laponite-derived porous clay heterostructures: II. FTIR study of the structure evolution. Microporous and Mesoporous Materials, 127, 237244.CrossRefGoogle Scholar
Persano, F., Gigli, G. & Leporatti, S. (2021) Halloysite-based nanosystems for biomedical applications. Clays and Clay Minerals, 69, 501521.CrossRefGoogle Scholar
Polverejan, M., Pauly, T.R. & Pinnavaia, T.J. (2000) Acidic porous clay heterostructures (PCH): intragallery assembly of mesoporous silica in synthetic saponite clays. Chemical Materials, 12, 26982704.CrossRefGoogle Scholar
Ruiz-Hitzky, E. & Aranda, P. (2014) Novel architectures in porous materials based on clays. Journal of Sol-Gel Science and Technoogy, 70, 307316.CrossRefGoogle Scholar
Ruiz-Hitzky, E., Aranda, P., Alvarez, A., Santaren, J. & Cubillo, A.E. (2011) Advanced materials and new applications of sepiolite and palygorskite. Developments in Clay Science, 3, 393452.CrossRefGoogle Scholar
Suarez, M. & Garcia-Romero, E. (2006) FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet. Applied Clay Science, 31, 154163.CrossRefGoogle Scholar
Suarez Barrios, M., Flores Gonzalez, L.V., Vicente Rodriguez, M.A. & Martin Pozas, J.M. (1995) Acid activation of a palygorskite with HCl: development of physico-chemical, textural and surface properties. Applied Clay Science, 10, 247258.CrossRefGoogle Scholar
Tobajas, M., Belver, C. & Rodriguez, J.J. (2017) Degradation of emerging pollutants in water under solar irradiation using novel TiO2-ZnO/clay nanoarchitectures. Chemical Engineering Journal, 309, 596606.CrossRefGoogle Scholar
Yang, H., Tang, A., Ouyang, J., Li, M. & Mann, S. (2010) From natural attapulgite to mesoporous materials: methodology, characterization and structural evolution. Journal of Physical Chemistry B, 114, 23902398.CrossRefGoogle ScholarPubMed
Yang, P., Song, M., Kim, D., Jung, S.P. & Hwang, Y. (2019) Synthesis conditions of porous clay heterostructure (PCH) optimized for volatile organic compounds (VOC) adsorption. Korean Journal of Chemical Engineering, 36, 18061813.CrossRefGoogle Scholar
Yuan, M., Deng, W., Dong, S., Li, Q., Zhao, B. & Su, Y. (2018) Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene. Chemical Engineering Journal, 353, 839848.CrossRefGoogle Scholar