Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T22:31:35.468Z Has data issue: false hasContentIssue false

Effect of amino acid (glycine) on the distribution of transition metal (Co-Ni-Zn-Cu) and magnesium divalent ions between silicate gels and aqueous solutions: an experimental study

Published online by Cambridge University Press:  09 July 2018

M. Dabira
Affiliation:
Centre de Recherches sur la Synthèse et la Chimie des Minèraux GIS/CNRS-BRGM, 1A rue de la Férollerie, 45071 Orldans Cedex 02, France
F. Delbove
Affiliation:
Centre de Recherches sur la Synthèse et la Chimie des Minèraux GIS/CNRS-BRGM, 1A rue de la Férollerie, 45071 Orldans Cedex 02, France
A. Perruchot
Affiliation:
Centre de Recherches sur la Synthèse et la Chimie des Minèraux GIS/CNRS-BRGM, 1A rue de la Férollerie, 45071 Orldans Cedex 02, France
J. Trichet
Affiliation:
Centre de Recherches sur la Synthèse et la Chimie des Minèraux GIS/CNRS-BRGM, 1A rue de la Férollerie, 45071 Orldans Cedex 02, France

Abstarct

The study of M and Mg ion exchange (M = Co, Ni, Cu, Zn), between silicate gels SiO2.q(M, Mg)O.nH2O and amino acid (glycine) saline aqueous solutions (M, Mg)SO4, shows that the introduction of the complexing agent completely upsets the original distribution equilibria of M and Mg between the two types of phases. The values of the measured bulk distribution coefficient

are lowered considerably relative to the inorganic reference distribution coefficients. The lowering of D may be accounted for by calculating the contents of the different species, MA, MA+, M2+, under which the metallic element M is present in the solutions. The values of

resulting from the calculated M2+ contents are identical to the values of Dref, determined in systems without a complexing agent.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreux, F. (1979) Genese et propriétés des molecules chimiques. In: ‘Pedoiogie’ 2 Constitmnts et Propriétés du Sol. (Bonneau, M Souchier, B., editors). Masson, Paris.Google Scholar
Flaig, W., Beutelspacher, H. & Rietz, F. (1975) Chemical composition and physical properties of humic substance. Pp. 1-219 in: Soil Components 1 (Gieseking, J. E., editor). Springer-Verlag, New York.Google Scholar
Ghuysen, J.M., Tipper, D.J., Birge, C.H. Strominger, J. (1965) Structure of the cell wall of staphylococcus aureus strain Copenhagen. VI: The soluble glycopeptides and its sequential degradation by peptidases. Biochemistry 4, 2245-2254.Google Scholar
Greenstein, J.P. Winitz, M. (1961) Chemistry of the Amino-Acids John Wiley Sons, New York.Google Scholar
Irving, H. Williams, R.J.P. (1953) The stability of transition-metal complexes. J. Chem. Soc. 637, 31923210.CrossRefGoogle Scholar
Jackson, K.S., Jonasson, I.R. & Skippen, G.B. (1978) The nature of metal-sediment water interaction in freshwater bodies, with emphasis on the role of organic matter. Earth Sci. Reviews 14, 97-146.Google Scholar
Manskaya, S.M. Drozdova, T.V. (1968) Geochemistry of Organic Substances. Pergamon Press, Oxford.Google Scholar
Perrin, D.D. (1979) Stability Constants of Metal-Ion Complexes. Part B. Organic Ligands. IUPAC Chemical data series, 22. Pergamon Press, Oxford.Google Scholar
Perruchot, A. (1976a) Contribution a l'etude de la formation des gites silicates de nickel. Bull. Soc. franç. Mineral. Cristallogr. 99, 225-233.Google Scholar
Perruchot, A. (1976b) Contribution a l'étude des échanges d'ions dans les gels silicatés. Comportement des elements alcalino-terreux et de quelques elements de transition Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ . Bull. Soc. frang. Mineral. Cristallogr. 99, 234-242.Google Scholar
Perruchot, A., Delbove, F. Joron, J.L. (1981) Etude par activation neutronique de la distribution de quelques elements entre gel silicaté et solution aqueuse. Clay Miner. 16, 245-249.CrossRefGoogle Scholar
Perruchot, A. Delbove, F. (1982a) Etude thermodynamique des échanges d'ions entre gels silicatés (A,B)0-Si02-nH20 et solution aqueuses (A2+,B2+) d'éléments de transition. Clay Miner. 17, 421-432.Google Scholar
Perruchot, A. Delbove, F. (1982b) Concentration des éléments de transition divalents par les gels silicatés. Interpretation thermodynamique de quelques donnees expérimentales. Sci. Geol. Bull. 35, 55-69.CrossRefGoogle Scholar
Schnitzer, M. Khan, S.V. (1972) Humic Substances in the Environment. Dekker, New York,Google Scholar
Schnitzer, M. Khan, S.V. (1978) Soil Organic Matter. Elsevier, Amsterdam.Google Scholar
Sillen, L.G. Martell, A.E. (1971) Stability Constants of Metal-Ion Complexes. The Chemical Society, London.Google Scholar
Szalay, A. Szilagyi, M. (1969) Accumulation of microelements in peat humic acids and coal. Pp. 567-577 in: Advances in Organic Geochemistry Pergamon Press, Oxford.Google Scholar