Skip to main content Accessibility help
×
Home

Diffusion and retention behaviour of Cs in illite-added compacted montmorillonite

  • Takamitsu Ishidera (a1), Seiichi Kurosawa (a2), Masanori Hayashi (a2), Keiji Uchikoshi (a2) and Hikari Beppu (a2)...

Abstract

Compacted bentonite is to be used as a component of an engineered barrier system to retard the migration of radionuclides in the geological disposal of radioactive waste. In such an environment, montmorillonite in compacted bentonite might be altered to illite due to the hydrothermal reactions caused by the decay heat of radionuclides. In the present study, the diffusion and retention behaviour of Cs in compacted montmorillonite containing illitewas investigated using through-diffusion experiments. The experimental results showed that the flux of Cs attributed to the surface diffusion was independent of the sorption of Cs on illite, indicating that the Cs sorbed on illite was immobile or considerably less mobile than the Cs sorbed on montmorillonite. Consequently, the illite content in compacted bentonite is expected to enhance the sorption capacity of Cs without causing surface diffusion.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diffusion and retention behaviour of Cs in illite-added compacted montmorillonite
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Diffusion and retention behaviour of Cs in illite-added compacted montmorillonite
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Diffusion and retention behaviour of Cs in illite-added compacted montmorillonite
      Available formats
      ×

Copyright

Copyright © The Mineralogical Society of Great Britain and Ireland 2016 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

References

Hide All
Aertsens, M., Govaerts, J., Maes, N. & Van Laer, L. (2012) Consistency of the strontium transport parameters in Boom Clay obtained from different types of experiments: accounting for the filter plates. Materials Research Society Symposium Proceedings, 1475, 583588.10.1557/opl.2012.636
Ahn, J.H., Nagasaki, S., Tanaka, S. & Suzuki, A. (1995) Effects of smectite illitization on transport of actinides through engineered barriers of HLW repository. Materials Research Society Symposium Proceedings, 353, 231238.10.1557/PROC-353-231
Bradbury, M.H. & Baeyens, B. (2000) A generalised sorption model for the concentration-dependent uptake of caesium by argillaceous rocks. Journal of Contaminant Hydrology, 42, 141163.10.1016/S0169-7722(99)00094-7
Glaus, M.A., Rossé, R., Van Loon, L.R. & Yaroshchuk, A.E. (2008) Tracer diffusion in sintered stainless steel filters: measurement of effective diffusion coefficients and implications for diffusion studies with compacted clays. Clays and Clay Minerals, 56, 677685.10.1346/CCMN.2008.0560608
Glaus, M.A., Frick, S., Rossé, R. & Van Loon, L.R. (2010) Comparative study of tracer diffusion of HTO, 22Na+ and 36Cr in compacted kaolinite, illite and montmorillonite. Geochimica et Cosmochimica Acta, 74, 19992010.10.1016/j.gca.2010.01.010
Glaus, M.A., Frick, S., Rossé R. & Van Loon, L.R. (2011) Consistent interpretation of the results of through-, out-diffusion and tracer profile analysis for trace anion diffusion in compacted montmorillonite. Journal of Contaminant Hydrology, 123, 110.10.1016/j.jconhyd.2010.11.009
Glaus, M.A., Aertsens, M., Appelo, C.A.J., Kupcik, T., Maes, N., Van Laer, L. & Van Loon, L.R. (2015a) Cation diffusion in the electrical double layer enhances the mass transfer rates for Sr2+, Co2+ and Zn2+ in compacted illite. Geochimica et Cosmochimica Acta, 165, 376—388.10.1016/j.gca.2015.06.014
Glaus, M.A., Aertsens, M., Maes, N., Van Laer, L. & Van Loon, L.R. (2015b) Treatment of boundary conditions in through-diffusion: A case study of 85Sr2+ diffusion in compacted illite. Journal of Contaminant Hydrology, 177-178, 239248.10.1016/j.jconhyd.2015.03.010
Ito, M., Okamoto, M. & Shibata, M. et al. (1993) Mineral composition analysis of bentonite, PNC TN8430 93-003, Japan Nuclear Cycle Development Institute [in Japanese].
Japan Nuclear Cycle Development Institute (JNC) (2000) H1 2: Project to establish the technical basis for HLW disposal in Japan, Supporting report 3, Safety assessment of the geological system, JNC TN1 410 2000-004.
Kim, H., Suk, T., Park, S. & Lee, C. (1993) Diffusivities for ions through compacted Na-bentonite with varying dry bulk density. Waste Management, 13, 303308.10.1016/0956-053X(93)90058-5
Melkior, T., Yahiaoui, S., Motellier, S., Thoby, D. & Tevissen, E. (2005) Cesium sorption and diffusion in Bure mudrock samples. Applied Clay Science, 29, 172186.10.1016/j.clay.2004.12.008
Molera, M. & Eriksen, T. (2002) Diffusion of 22Na+, 85Sr2+ 134Cs+ and 57Co2+ in bentonite clay compacted to different densities: experiments and modeling. Radiochimica Acta, 90, 753760.10.1524/ract.2002.90.9-11_2002.753
Muurinen, A., Rantanen, J. & Penttilä-Hiltunen, P. (1985) Diffusion mechanisms of strontium, cesium and cobalt in compacted sodium bentonite. Materials Research Society Symposium Proceedings, 50, 617624.10.1557/PROC-50-617
NAGRA (2002) Project Opalinus Clay: Safety Report. Demonstration of disposal feasibility for spent fuel, vitrified high-level waste and long-lived intermediate-level waste (Entsorgungsnachweis), NTB 02-05.
Ohnuki, T., Murakami, T., Sato, T. & Isobe, H. (1994) Redistribution of strontium and cesium during alteration of smectite to illite. Radiochimica Acta, 66/67, 323326.
Oscarson, D.W., Hume, H.B. & King, F. (1994) Sorption of cesium on compacted bentonite. Clays and Clay Minerals, 42, 731736.10.1346/CCMN.1994.0420609
Poinssot, C., Baeyens, B. & Bradbury, M. (1999) Experimental and modelling studies of caesium sorption on illite. Geochimica et Cosmochimica Acta, 63, 32173227.10.1016/S0016-7037(99)00246-X
Sato, H., Ashida, T., Kohara, Y., Yui, M. & Sasaki, N. (1992) Effect of dry density on diffusion of some radio-nuclides in compacted sodium bentonite. Journal of Nuclear Science and Technology, 29, 873882.10.1080/18811248.1992.9731607
Sawhney, B.L. (1971) Selective sorption and fixation of cations by clay minerals: A review. Clays and Clay Minerals, 20, 93100.10.1346/CCMN.1972.0200208
Sawaguchi, T., Yamaguchi, T., Iida, Y., Tanaka, T. & Kitagawa, I. (2013) Diffusion of Cs, Np, Am and Co in compacted sand-bentonite mixtures: evidence for surface diffusion of Cs cations. Clay Minerals, 48, 41122.10.1180/claymin.2013.048.2.19
SKB (2011) Long-term safety for the final repository for spent nuclear fuel at Forsmark. Main report of the SR-Site project, SKB TR-11-01.
Suzuki, S., Sato, H., Ishidera, T. & Fujii, N. (2004) Study on anisotropy of effective diffusion coefficient and activation energy for deuterated water in compacted sodium bentonite. Journal of Contaminant Hydrology, 68, 2337.10.1016/S0169-7722(03)00139-6
Suzuki, S., Haginuma, M. & Suzuki, K. (2007) Study of sorption and diffusion of 137Cs in compacted bentonite saturated with saline water at 60°C. Journal of Nuclear Science and Technology, 44, 8189.10.1080/18811248.2007.9711259
Van Loon, L.R., Wersin, P., Soler, J.M., Gimmi, Th., Hernán, P., Dewonck, S. & Savoye, S. (2004) In-situ diffusion of HTO, 22Na+, Cs+ and I” in Opalinus Clay at the Mont Terri underground rock laboratory. Radiochimica Acta, 92, 757763.10.1524/ract.92.9.757.54988
Wanner, H., Albinsson, Y. & Wieland, E. (1996) A thermodynamic surface model for caesium sorption on bentonite. Fresenius Journal of Analytical Chemistry, 354, 763769.
Wersin, P., Soler, J.M., Van Loon, L., Eikenberg, J., Baeyens, B., Grolimund, D., Gimmi, T. & Dewonck, S. (2008) Diffusion of HTO, Br” T, Cs+, 85Sr2+ and 60Co2+ in a clay formation: Results and modelling from an in situ experiment in Opalinus Clay. Applied Geochemistry, 23, 678691.10.1016/j.apgeochem.2007.11.004

Keywords

Related content

Powered by UNSILO

Diffusion and retention behaviour of Cs in illite-added compacted montmorillonite

  • Takamitsu Ishidera (a1), Seiichi Kurosawa (a2), Masanori Hayashi (a2), Keiji Uchikoshi (a2) and Hikari Beppu (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.