Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T10:51:30.868Z Has data issue: false hasContentIssue false

Comparative study of the transition between very low-grade and low-grade metamorphism in siliciclastic and carbonate sediments: Early Cretaceous, Cameros Basin (northern Spain)

Published online by Cambridge University Press:  09 July 2018

J. Alonso-Azcarate
Affiliation:
Dpto. de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid
J. F. Barrenechea
Affiliation:
Dpto. de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid
M. Rodas
Affiliation:
Dpto. de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid
J. R. Mas
Affiliation:
Dpto. de Estratigrafía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

Abstract

The transition between very low-grade and low-grade metamorphism has been studied in the Urbión and Enciso Groups of the Late Jurassic-Early Cretaceous Cameros basin (NE Spain). The ‘illite crystallinity’ (IC) values do not appear to be controlled by burial depth but rather by: (1) XRD overlap with other phases (e.g. paragonite and mixed-layered muscovite-paragonite) in the siliciclastic samples; (2) the presence of carbonates, which delay illitization, resulting in an increase in the IC values, that becomes more pronounced as the P-T conditions decrease towards the diagenesis zone; and (3) the permeability of the sediments, which controls the circulation of metamorphic fluids and therefore the distribution of ‘crystallinities’ and mineral assemblages within the basin.

The anchizone is represented by a narrow range of ‘chlorite crystallinity’ (ChC) values. Therefore, ChC is a less sensitive parameter than IC for estimating changes from diagenetic to low-grade metamorphic conditions. However, ChC can be a useful tool when there is a great heterogeneity of facies types, as it is not affected by the presence of carbonates.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkai, P. (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystaUinity, coal rank and mineral facies as exemplified by Paleozoic and Mesozoic rocks of northeast Hungary. J. Met. Geol. 9, 723734.CrossRefGoogle Scholar
Arkai, P. & Lelkes Felvary, G.Y. (1993) The effects of lithology, bulk chemistry and modal composition on illite “crystallinity”–A case study from the Bakony Mts., Hungary. Clay Miner. 28, 417433.Google Scholar
Arostegui, J., Zuluaga, M. C., Velasco, F., Ortegahuertas, M. & Nieto, F. (1991) Diagenesis of the Central Basque-Cantabrian Basin (Iberian Peninsula) based on illite-smectite distribution. Clay Miner. 26, 535548.CrossRefGoogle Scholar
Barrenechea, J.F. (1994) Evolución de la mineralogía de arcillas en el transito diagenesis-metamorfismo de bait grado en el Grupo Urbión (Cretácico Inferior) de la cuenca de los Cameros (Soria-La Rioja). PhD thesis, University of Madrid, Spain.Google Scholar
Barrenechea, J.F., Rodas, M. & Mas, J.R. (1995) Clay mineral variations associated with diagenesis and low-grade metamorphism of Early Cretaceous sediments in the Cameros Basin, Spain. Clay Miner. 30, 119133.Google Scholar
Beutuer, A. (1965) Geologische untersuchungen in Wealden und Utrillas. Schichten im Westteil der Sierra de los Cameros (Nordwestlich Iberischen Ketten). GeoL Jahrb. Biehefte 44, 103121.Google Scholar
Caritat, P., Hutcheon, I. & Walshe, J.L. (1993) Chlorite geothermometry: a review. Clays Clay Miner. 41, 219239.CrossRefGoogle Scholar
Casquet, C., Galindo, C., Gonzalez Casado, J. M., Alonso, A., Mas, R., Rodas, M., Garcia, E. & Barrenechea, J. F. (1992) E1 metamorfismo en la Cuenca de los Cameros. Geocronologia e implicaciones tectónicas. Geogaceta 11, 2225.Google Scholar
Cathelineau, M. (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 23, 471485.CrossRefGoogle Scholar
Duba, D. & William-Jones, A.E. (1983) The application of illite crystallinity, organic matter reflectance and isotopic techniques to mineral exploration: a case study in southwestern Gaspé, Quebec. Econ. Geol. 78, 13501363.CrossRefGoogle Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 9–58 in: Low- Temperature Metamorphism (Frey, M., editor), Blackie and Sons, Scotland.Google Scholar
Guidotti, C.V. & Sassi, F.P. (1986) Classification and correlation of metamorphic facies series by means of muscovite bo data from low-grade metapelites. Neues Jb. Miner. Abh. 153, 363380.Google Scholar
Guidottt, C. V., Mazzoli, C., Sassi, F. P. & Blencoe, J. G. (1992) Compositional controls on the cell dimensions of 2M1 muscovite and paragonite. Eur. J. Mineral. 4, 283297.CrossRefGoogle Scholar
Guimera, J., Alonso, A. & Mas, J.R. (1995) Inversion of an extensional-ramp basin by a neoformed thrust: the Cameros basin (N Spain). J. Geol. Soc. (in press).Google Scholar
Hillier, S. & Velde, B. (1991) Octahedral occupancy and the chemical composition of diagenetic (lowtemperature) chlorites. Clay Miner. 26, 149168.CrossRefGoogle Scholar
Jahren, J. S. & Aagaard, P. (1989) Compositional variations in diagenetic chlorites and illites, and relationship with formation-water chemistry. Clay Miner. 24, 157170.CrossRefGoogle Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J. Met. Geol. 9, 665670.CrossRefGoogle Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. Am. Miner. 68, 277279.Google Scholar
Kubler, B. (1967) La cristallinité de l'illite et les zones tout á fait supéfieures du métamorphisme. Etages Tectoniques. Coll Neuchatel, 105-122.Google Scholar
Le Corre, C. (1975) Analyse comparée de la cristallinité dans le Briovérian et le Paléozoique centre-armoricains: zonéographie et structure d'un domaine épizonal. Bull. Soc. Geól. France, 7e serie, 547-553.Google Scholar
Mas, J.R., Alonso, A. & Guimera, J. (1993) Evolución tectonosedimentaria de una cuenca extensional intraplaca: la cuenca finijuráisica-eocretácica de Los Cameros (La Rioja-Soria). Rev. Soc. Geol. Espana 6, 129144.Google Scholar
Moore, D.M., Reynolds, R.C. Jr. (1989) X-ray Diffraction Identification and Analysis of Clay Minerals. Oxford University Press, New York.Google Scholar
Salinas, F.J. & Mas, J. R. (1990) Estudio sedimentologico y tectosedimentario de la Cubeta de Cervera del Río Alhama (La Rioja) durante la sedimentación del Grupo Urbión (Cretácico Inferior). Estudios Geol. 46, 245255.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierce-Shale. U.S. Geol. Surv. Prof. Pap. 391-C.Google Scholar
Srodon, J. (1978) Correlation between coal and clay diagenesis in the carboniferous of the upper Silesian coal basin. Pp. 251–260 in: Developments in Sedimentology 27 (Mortland, M.M. & Farmer, V.C., editors.) Elsevier, Amsterdam.Google Scholar
Tischer, G. (1965) Uber die Wealden-Ablagerung und die Tektonik der ostlichen de los Cameros in den nordwestlichen Iberischen Ketten (Spanien). Geol. Jahrb. Biehefte 44, 123164.Google Scholar
Yang, C. & Hesse, R. (1991) Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, external domain of southern Canadian Appalachians. Clay Miner 26, 211231.Google Scholar