Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T22:15:27.609Z Has data issue: false hasContentIssue false

Coexistence of halloysite and iron-bearing clays in an altered ignimbrite, Patagonia, Argentina

Published online by Cambridge University Press:  27 February 2018

F. Cravero*
Affiliation:
Instituto de Geocronología y Geología Isotópica, CONICET-UBA, Pabellón INGEIS, Ciudad Universitaria, CABA, Argentina CONICET, Av.Rivadavia 1917, Buenos Aires, Argentina
S. A. Marfil
Affiliation:
Department of Geology, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Argentina CIC of the Province of Buenos Aires, Street N° 526 between 10 and 11, La Plata, Argentina
C. P. Ramos
Affiliation:
Departamento de Física de la Materia Condensada, GIyA–CAC–CNEA, Av.Gral. Paz 1499 (1650), San Martín, Buenos Aires, Argentina
P. Maiza
Affiliation:
Department of Geology, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Argentina

Abstract

The Mamil Choique halloysite deposits of Patagonia, Argentina, contain randomly distributed green clay inclusions and patches within the halloysite mass. Halloysite has been formed from the thorough alteration of rhyolitic to dacitic ash fall tuffs and ignimbrites of the Huitrera Formation, Eocene age, under ambient conditions. The smectites present in the clay inclusions have been determined as ferruginous beidellites with variables amounts of Fe3+ in octahedral sites. The weathering activity that caused the formation of halloysite was also responsible for the genesis of the iron-bearing clay minerals, the formation of which was controlled mainly by permeability. Textural variations within the rock indicate favourable local geochemical environments for the formation of the green clay minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G.W. (1980) Order-disorder in clay minerals. Pp. 125–195 in: Crystal Structures of Clay Minerals and their X-ray Identification. (G.W. Brindley & G. Brown, editors). Mineralogical Society of London, Monograph no. 5.CrossRefGoogle Scholar
Bernard, M., Dudoignon, P. & Dani, N. (2004) Dévitrification et altération supergène d’une rhyolite (Bassin du Paraná, Brésil): mécanismes et bilans géochimiques. Comptes Rendus Geoscience, 336, 789798.CrossRefGoogle Scholar
Bishop, J.L., Murad, E., Madejová, J., Komadel, P., Wagner, U. & Scheinost, A.C. (1999) Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: Structural analyses of the Fe-bearing smectites Sampor, SWy-1 and SWa-1. 11th International Clay Conference, June, 1997, Ottawa, 413–419.Google Scholar
Bouna, L., Rhouta, B., Daoudei, L., Maury, F., Amjoud, M., Senocq, F., Lafont, M.C., Jada, A. & Aghzzaf, A.A. (2012) Mineralogical and physico-chemical characterizations of ferruginous beidellite-rich clays from Agadir Basin (Morocco). Clays and Clay Minerals 60, 278290.CrossRefGoogle Scholar
Brand, R.A. (1987) Normos program, Internat. Rep. Angewandte Physik, University of Duisburg.Google Scholar
Che, C. & Glotch, T.D. (2012) The effect of high temperatures on the mid-to-far-infrared emission and near-infrared reflectance spectra of phyllosilicates and natural zeolites: Implications for Martian exploration. Icarus, 218, 585601.CrossRefGoogle Scholar
Christidis, G.E. (2006) Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocks. A case study from the Troodos Ophiolite Complex, Cyprus. American Mineralogist, 91, 685701.CrossRefGoogle Scholar
Christidis, G.E. (2008) Do bentonites have contradictory characteristics? An attempt to answer unanswered questions. Clay Minerals, 43, 515529.CrossRefGoogle Scholar
Churchman, G.J., Pontifex, I.R. & McClure, S.G. (2010) Factors influencing the formation and characteristics of halloysites or kaolinites in granitic and tuffaceous saprolites in Hong Kong. Clays and Clay Minerals, 58, 220237.Google Scholar
Cravero, F., Martínez, G.A. & Pestalardo, F. (2009) Yacimientos de halloysita en Mamil Choique, Provincia de Río Negro, Patagonia. Revista de la Asociación Geológica Argentina 65, 586592.Google Scholar
Cravero, F., Maiza, P.J. & Marfil, S.A. (2012) Halloysite in Argentinian deposits: origin and textural constraints. Clay Minerals, 47, 329340.CrossRefGoogle Scholar
Fieldes, M. & Williamson, K.I. (1955) Clay Mineralogy of New Zealand Soils: Part I – Electron Micrography. New Zealand Journal of Science and Technology, 37, 314335.Google Scholar
Frost, R.L., Ruana, H., Kloprogge, J.T. & Gates, W.P. (2000) Dehydration and dehydroxylation of nontronites and ferruginous smectite. Thermochimica Acta, 346, 6372.CrossRefGoogle Scholar
Güven, N. (1988) Smectites. Pp. 497–559 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington D.C. Google Scholar
Harder, H. (1978) Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals, 26, 6572.CrossRefGoogle Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals – a review. Clay Minerals, 40, 383426.CrossRefGoogle Scholar
Kadir, S. & Karakas, Z. (2002) Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey. Neues. Jahrbuch fur Mineralogie Abhandlungen, 177, 113132.CrossRefGoogle Scholar
Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E. & Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579600.CrossRefGoogle Scholar
Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 110.CrossRefGoogle Scholar
Mizota, C. & Van Reeuwijk, L.P. (1989) Clay mineralogy and chemistry of soils formed in volcanic material in diverse climatic regions. Soil Monograph, 2, ISRIC, Wageningen. 186 pp.Google Scholar
Pankhurst, R.J., Rapela, C.W., Fanning, C.M. & Marquez, M. (2006) Gondwanide Continental collision and the origin of Patagonia. Earth-Science Reviews, 76, 235257.CrossRefGoogle Scholar
Papoulis, D., Tsolis-Katagas, P. & Katagas, C. (2004) Progressive stages in the formation of kaolinite from halloysite in the weathering of plagioclase. Clays and Clay Minerals, 52, 271285.CrossRefGoogle Scholar
Parham, W.E. (1969) Halloysite-rich tropical weathering products of Hong Kong. Proceedings of the International Clay Conference, Tokyo, 1, 403416.Google Scholar
Post, J.L., Cupp, B.L. & Madsen, F.T. (1997) Beidellite and associated clays from the DeLamar Mine and Florida Mountain Area, Idaho. Clays and Clay Minerals, 45, 240250.CrossRefGoogle Scholar
Rozenson, I. & Heller-Kallai, L. (1977) Mö ssbauer spectra of dioctahedral smectites. Clays and Clay Minerals 25, 94101.CrossRefGoogle Scholar
Sherman, G.D., Ikawa, H., Uehara, G. & Okazaki, E. (1962) Types of occurrence of nontronite and nontronite-like minerals in soils. Pacific Science, 16, 5862.Google Scholar
Weir, A.H. & Green-Kelly, R. (1962) Beidellite. American Mineralogist, 47, 137146.Google Scholar
Wilson, M.J. (2013) Nontronite. Pp 279–299 in: Rockforming Minerals: Sheet Silicates: Clay Minerals, Volume 3C, 2nd edition. Geological Society of London.Google Scholar