Skip to main content Accessibility help
×
Home

Coexistence of halloysite and iron-bearing clays in an altered ignimbrite, Patagonia, Argentina

  • F. Cravero (a1) (a2), S. A. Marfil (a3) (a4), C. P. Ramos (a5) and P. Maiza (a3)

Abstract

The Mamil Choique halloysite deposits of Patagonia, Argentina, contain randomly distributed green clay inclusions and patches within the halloysite mass. Halloysite has been formed from the thorough alteration of rhyolitic to dacitic ash fall tuffs and ignimbrites of the Huitrera Formation, Eocene age, under ambient conditions. The smectites present in the clay inclusions have been determined as ferruginous beidellites with variables amounts of Fe3+ in octahedral sites. The weathering activity that caused the formation of halloysite was also responsible for the genesis of the iron-bearing clay minerals, the formation of which was controlled mainly by permeability. Textural variations within the rock indicate favourable local geochemical environments for the formation of the green clay minerals.

Copyright

Corresponding author

References

Hide All
Brindley, G.W. (1980) Order-disorder in clay minerals. Pp. 125–195 in: Crystal Structures of Clay Minerals and their X-ray Identification. (G.W. Brindley & G. Brown, editors). Mineralogical Society of London, Monograph no. 5.
Bernard, M., Dudoignon, P. & Dani, N. (2004) Dévitrification et altération supergène d’une rhyolite (Bassin du Paraná, Brésil): mécanismes et bilans géochimiques. Comptes Rendus Geoscience, 336, 789798.
Bishop, J.L., Murad, E., Madejová, J., Komadel, P., Wagner, U. & Scheinost, A.C. (1999) Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: Structural analyses of the Fe-bearing smectites Sampor, SWy-1 and SWa-1. 11th International Clay Conference, June, 1997, Ottawa, 413–419.
Bouna, L., Rhouta, B., Daoudei, L., Maury, F., Amjoud, M., Senocq, F., Lafont, M.C., Jada, A. & Aghzzaf, A.A. (2012) Mineralogical and physico-chemical characterizations of ferruginous beidellite-rich clays from Agadir Basin (Morocco). Clays and Clay Minerals 60, 278290.
Brand, R.A. (1987) Normos program, Internat. Rep. Angewandte Physik, University of Duisburg.
Che, C. & Glotch, T.D. (2012) The effect of high temperatures on the mid-to-far-infrared emission and near-infrared reflectance spectra of phyllosilicates and natural zeolites: Implications for Martian exploration. Icarus, 218, 585601.
Christidis, G.E. (2006) Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocks. A case study from the Troodos Ophiolite Complex, Cyprus. American Mineralogist, 91, 685701.
Christidis, G.E. (2008) Do bentonites have contradictory characteristics? An attempt to answer unanswered questions. Clay Minerals, 43, 515529.
Churchman, G.J., Pontifex, I.R. & McClure, S.G. (2010) Factors influencing the formation and characteristics of halloysites or kaolinites in granitic and tuffaceous saprolites in Hong Kong. Clays and Clay Minerals, 58, 220237.
Cravero, F., Martínez, G.A. & Pestalardo, F. (2009) Yacimientos de halloysita en Mamil Choique, Provincia de Río Negro, Patagonia. Revista de la Asociación Geológica Argentina 65, 586592.
Cravero, F., Maiza, P.J. & Marfil, S.A. (2012) Halloysite in Argentinian deposits: origin and textural constraints. Clay Minerals, 47, 329340.
Fieldes, M. & Williamson, K.I. (1955) Clay Mineralogy of New Zealand Soils: Part I – Electron Micrography. New Zealand Journal of Science and Technology, 37, 314335.
Frost, R.L., Ruana, H., Kloprogge, J.T. & Gates, W.P. (2000) Dehydration and dehydroxylation of nontronites and ferruginous smectite. Thermochimica Acta, 346, 6372.
Güven, N. (1988) Smectites. Pp. 497–559 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington D.C.
Harder, H. (1978) Synthesis of iron layer silicate minerals under natural conditions. Clays and Clay Minerals, 26, 6572.
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals – a review. Clay Minerals, 40, 383426.
Kadir, S. & Karakas, Z. (2002) Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey. Neues. Jahrbuch fur Mineralogie Abhandlungen, 177, 113132.
Köster, H.M., Ehrlicher, U., Gilg, H.A., Jordan, R., Murad, E. & Onnich, K. (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579600.
Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 110.
Mizota, C. & Van Reeuwijk, L.P. (1989) Clay mineralogy and chemistry of soils formed in volcanic material in diverse climatic regions. Soil Monograph, 2, ISRIC, Wageningen. 186 pp.
Pankhurst, R.J., Rapela, C.W., Fanning, C.M. & Marquez, M. (2006) Gondwanide Continental collision and the origin of Patagonia. Earth-Science Reviews, 76, 235257.
Papoulis, D., Tsolis-Katagas, P. & Katagas, C. (2004) Progressive stages in the formation of kaolinite from halloysite in the weathering of plagioclase. Clays and Clay Minerals, 52, 271285.
Parham, W.E. (1969) Halloysite-rich tropical weathering products of Hong Kong. Proceedings of the International Clay Conference, Tokyo, 1, 403416.
Post, J.L., Cupp, B.L. & Madsen, F.T. (1997) Beidellite and associated clays from the DeLamar Mine and Florida Mountain Area, Idaho. Clays and Clay Minerals, 45, 240250.
Rozenson, I. & Heller-Kallai, L. (1977) Mö ssbauer spectra of dioctahedral smectites. Clays and Clay Minerals 25, 94101.
Sherman, G.D., Ikawa, H., Uehara, G. & Okazaki, E. (1962) Types of occurrence of nontronite and nontronite-like minerals in soils. Pacific Science, 16, 5862.
Weir, A.H. & Green-Kelly, R. (1962) Beidellite. American Mineralogist, 47, 137146.
Wilson, M.J. (2013) Nontronite. Pp 279–299 in: Rockforming Minerals: Sheet Silicates: Clay Minerals, Volume 3C, 2nd edition. Geological Society of London.

Keywords

Related content

Powered by UNSILO

Coexistence of halloysite and iron-bearing clays in an altered ignimbrite, Patagonia, Argentina

  • F. Cravero (a1) (a2), S. A. Marfil (a3) (a4), C. P. Ramos (a5) and P. Maiza (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.